Improving Fairness in Credit Lending Models using Subgroup Threshold Optimization
- URL: http://arxiv.org/abs/2403.10652v1
- Date: Fri, 15 Mar 2024 19:36:56 GMT
- Title: Improving Fairness in Credit Lending Models using Subgroup Threshold Optimization
- Authors: Cecilia Ying, Stephen Thomas,
- Abstract summary: We introduce a new fairness technique called textitSubgroup Threshold (textitSTO)
STO works by optimizing the classification thresholds for individual subgroups in order to minimize the overall discrimination score between them.
Our experiments on a real-world credit lending dataset show that STO can reduce gender discrimination by over 90%.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In an effort to improve the accuracy of credit lending decisions, many financial intuitions are now using predictions from machine learning models. While such predictions enjoy many advantages, recent research has shown that the predictions have the potential to be biased and unfair towards certain subgroups of the population. To combat this, several techniques have been introduced to help remove the bias and improve the overall fairness of the predictions. We introduce a new fairness technique, called \textit{Subgroup Threshold Optimizer} (\textit{STO}), that does not require any alternations to the input training data nor does it require any changes to the underlying machine learning algorithm, and thus can be used with any existing machine learning pipeline. STO works by optimizing the classification thresholds for individual subgroups in order to minimize the overall discrimination score between them. Our experiments on a real-world credit lending dataset show that STO can reduce gender discrimination by over 90\%.
Related papers
- Editable Fairness: Fine-Grained Bias Mitigation in Language Models [52.66450426729818]
We propose a novel debiasing approach, Fairness Stamp (FAST), which enables fine-grained calibration of individual social biases.
FAST surpasses state-of-the-art baselines with superior debiasing performance.
This highlights the potential of fine-grained debiasing strategies to achieve fairness in large language models.
arXiv Detail & Related papers (2024-08-07T17:14:58Z) - Federated Class-Incremental Learning with Hierarchical Generative Prototypes [10.532838477096055]
Federated Learning (FL) aims at unburdening the training of deep models by distributing computation across multiple devices (clients)
Our proposal constrains both biases in the last layer by efficiently finetuning a pre-trained backbone using learnable prompts.
Our method significantly improves the current State Of The Art, providing an average increase of +7.8% in accuracy.
arXiv Detail & Related papers (2024-06-04T16:12:27Z) - Class-Imbalanced Semi-Supervised Learning for Large-Scale Point Cloud
Semantic Segmentation via Decoupling Optimization [64.36097398869774]
Semi-supervised learning (SSL) has been an active research topic for large-scale 3D scene understanding.
The existing SSL-based methods suffer from severe training bias due to class imbalance and long-tail distributions of the point cloud data.
We introduce a new decoupling optimization framework, which disentangles feature representation learning and classifier in an alternative optimization manner to shift the bias decision boundary effectively.
arXiv Detail & Related papers (2024-01-13T04:16:40Z) - Boosting Fair Classifier Generalization through Adaptive Priority Reweighing [59.801444556074394]
A performance-promising fair algorithm with better generalizability is needed.
This paper proposes a novel adaptive reweighing method to eliminate the impact of the distribution shifts between training and test data on model generalizability.
arXiv Detail & Related papers (2023-09-15T13:04:55Z) - ASPEST: Bridging the Gap Between Active Learning and Selective
Prediction [56.001808843574395]
Selective prediction aims to learn a reliable model that abstains from making predictions when uncertain.
Active learning aims to lower the overall labeling effort, and hence human dependence, by querying the most informative examples.
In this work, we introduce a new learning paradigm, active selective prediction, which aims to query more informative samples from the shifted target domain.
arXiv Detail & Related papers (2023-04-07T23:51:07Z) - Stochastic Methods for AUC Optimization subject to AUC-based Fairness
Constraints [51.12047280149546]
A direct approach for obtaining a fair predictive model is to train the model through optimizing its prediction performance subject to fairness constraints.
We formulate the training problem of a fairness-aware machine learning model as an AUC optimization problem subject to a class of AUC-based fairness constraints.
We demonstrate the effectiveness of our approach on real-world data under different fairness metrics.
arXiv Detail & Related papers (2022-12-23T22:29:08Z) - Fairness Reprogramming [42.65700878967251]
We propose a new generic fairness learning paradigm, called FairReprogram, which incorporates the model reprogramming technique.
Specifically, FairReprogram considers the case where models can not be changed and appends to the input a set of perturbations, called the fairness trigger.
We show both theoretically and empirically that the fairness trigger can effectively obscure demographic biases in the output prediction of fixed ML models.
arXiv Detail & Related papers (2022-09-21T09:37:00Z) - ABCinML: Anticipatory Bias Correction in Machine Learning Applications [9.978142416219294]
We propose an anticipatory dynamic learning approach for correcting the algorithm to mitigate bias before it occurs.
Results from experiments over multiple real-world datasets suggest that this approach has promise for anticipatory bias correction.
arXiv Detail & Related papers (2022-06-14T16:26:10Z) - Balancing Biases and Preserving Privacy on Balanced Faces in the Wild [50.915684171879036]
There are demographic biases present in current facial recognition (FR) models.
We introduce our Balanced Faces in the Wild dataset to measure these biases across different ethnic and gender subgroups.
We find that relying on a single score threshold to differentiate between genuine and imposters sample pairs leads to suboptimal results.
We propose a novel domain adaptation learning scheme that uses facial features extracted from state-of-the-art neural networks.
arXiv Detail & Related papers (2021-03-16T15:05:49Z) - All of the Fairness for Edge Prediction with Optimal Transport [11.51786288978429]
We study the problem of fairness for the task of edge prediction in graphs.
We propose an embedding-agnostic repairing procedure for the adjacency matrix of an arbitrary graph with a trade-off between the group and individual fairness.
arXiv Detail & Related papers (2020-10-30T15:33:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.