論文の概要: Towards Practical Fabrication Stage Attacks Using Interrupt-Resilient Hardware Trojans
- arxiv url: http://arxiv.org/abs/2403.10659v2
- Date: Thu, 2 May 2024 20:27:35 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-06 17:27:48.230173
- Title: Towards Practical Fabrication Stage Attacks Using Interrupt-Resilient Hardware Trojans
- Title(参考訳): 耐震性ハードウェアトロイの木馬を用いた実用ステージ攻撃に向けて
- Authors: Athanasios Moschos, Fabian Monrose, Angelos D. Keromytis,
- Abstract要約: 我々は、割り込み耐性トロイの木馬(IRT)と呼ばれる新しい種類のハードウェアトロイの木馬を紹介する。
IRTはCPUにおける非決定的トリガーの問題にうまく対処できる。
我々の設計は、製造段階攻撃時のシームレスな統合を可能にしている。
- 参考スコア(独自算出の注目度): 4.549209593575401
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: We introduce a new class of hardware trojans called interrupt-resilient trojans (IRTs). Our work is motivated by the observation that hardware trojan attacks on CPUs, even under favorable attack scenarios (e.g., an attacker with local system access), are affected by unpredictability due to non-deterministic context switching events. As we confirm experimentally, these events can lead to race conditions between trigger signals and the CPU events targeted by the trojan payloads (e.g., a CPU memory access), thus affecting the reliability of the attacks. Our work shows that interrupt-resilient trojans can successfully address the problem of non-deterministic triggering in CPUs, thereby providing high reliability guarantees in the implementation of sophisticated hardware trojan attacks. Specifically, we successfully utilize IRTs in different attack scenarios against a Linux-capable CPU design and showcase its resilience against context-switching events. More importantly, we show that our design allows for seamless integration during fabrication stage attacks.We evaluate different strategies for the implementation of our attacks on a tape-out ready high-speed RISC-V microarchitecture in a 28nm commercial technology process and successfully implement them with an average overhead delay of only 20 picoseconds, while leaving the sign-off characteristics of the layout intact. In doing so, we challenge the common wisdom regarding the low flexibility of late supply chain stages (e.g., fabrication) for the insertion of powerful trojans. To promote further research on microprocessor trojans, we open-source our designs and provide the accompanying supporting software logic.
- Abstract(参考訳): 我々は、割り込み耐性トロイの木馬(IRT)と呼ばれる新しい種類のハードウェアトロイの木馬を紹介する。
我々の研究は、CPUに対するハードウェアトロイの木馬攻撃が、適切な攻撃シナリオ(例えば、ローカルシステムアクセスを持つ攻撃者)であっても、決定論的でないコンテキスト切替イベントによる予測不可能な影響を受けているという観察に動機づけられている。
実験で確認したように、これらのイベントはトリガー信号とトロイの木馬ペイロード(CPUメモリアクセスなど)がターゲットとするCPUイベントの間の競合状態を引き起こし、攻撃の信頼性に影響を与える可能性がある。
我々の研究は、割り込み耐性トロイの木馬がCPUの非決定的トリガ問題にうまく対処できることを示し、洗練されたハードウェアトロイの木馬攻撃の実装における信頼性の高い保証を提供する。
具体的には、Linux対応CPU設計に対する異なる攻撃シナリオでIRTをうまく利用し、コンテキストスイッチングイベントに対するレジリエンスを示す。
さらに,28nmの商用技術プロセスにおいて,テープアウト可能な高速RISC-Vマイクロアーキテクチャへの攻撃を,20ピコ秒の平均オーバーヘッド遅延で実装し,レイアウトのサインオフ特性をそのまま残しながら,シームレスな統合を実現していることを示す。
そこで我々は、強力なトロイの木馬を挿入するための後期サプライチェーンステージ(例えば、製造)の柔軟性の低さに関する共通の知恵に挑戦する。
マイクロプロセッサトロイの木馬のさらなる研究を促進するため,我々は設計をオープンソース化し,それに伴うソフトウェアロジックを提供する。
関連論文リスト
- An AI-Enabled Side Channel Power Analysis Based Hardware Trojan Detection Method for Securing the Integrated Circuits in Cyber-Physical Systems [7.333490062088133]
最もステルスな脅威の1つは、ハードウェアトロイの木馬をICに挿入することである。
トロイの木馬はシステムの安全性とセキュリティを著しく侵害することができる。
本稿では,サイドチャネル電力解析に基づくハードウェアトロイの木馬検出のための非侵襲的手法を提案する。
論文 参考訳(メタデータ) (2024-11-19T18:39:20Z) - TroLLoc: Logic Locking and Layout Hardening for IC Security Closure against Hardware Trojans [21.7375312616769]
TroLLocはICセキュリティクロージャのための新しいスキームで、論理ロックとレイアウトの強化を初めて採用している。
我々は,ISPD'22コンテストにおけるトロイの木馬の挿入,ISPD'23コンテストにおけるトロイの木馬の挿入,および(iii)第2次攻撃に対して,合理的なオーバーヘッドでレイアウトのレジリエントなレンダリングに成功したことを示す。
論文 参考訳(メタデータ) (2024-05-09T07:25:38Z) - Model Supply Chain Poisoning: Backdooring Pre-trained Models via Embedding Indistinguishability [61.549465258257115]
そこで我々は,PTMに埋め込まれたバックドアをモデルサプライチェーンに効率的に移動させる,新しい,より厳しいバックドア攻撃であるTransTrojを提案する。
実験の結果,本手法はSOTAタスク非依存のバックドア攻撃より有意に優れていた。
論文 参考訳(メタデータ) (2024-01-29T04:35:48Z) - Evil from Within: Machine Learning Backdoors through Hardware Trojans [72.99519529521919]
バックドアは、自動運転車のようなセキュリティクリティカルなシステムの整合性を損なう可能性があるため、機械学習に深刻な脅威をもたらす。
私たちは、機械学習のための一般的なハードウェアアクセラレーターに完全に存在するバックドアアタックを導入します。
我々は,Xilinx Vitis AI DPUにハードウェアトロイの木馬を埋め込むことにより,攻撃の実現可能性を示す。
論文 参考訳(メタデータ) (2023-04-17T16:24:48Z) - Security Closure of IC Layouts Against Hardware Trojans [18.509106432984094]
i)レイアウトレベルのトロイの木馬防止,(ii)最先端のオラクルレス機械学習攻撃に対する耐性,(iii)カスタマイズされた汎用的かつ商用レベルの設計フローに完全に統合されたマルチプレクサベースの論理ロック方式を提案する。
我々は,一般的なトロイアの挿入に対して,また2階攻撃(すなわち,オラクルレス環境でのロック防御を回避しようとする敵)に対して,合理的なオーバーヘッドで,レイアウトをレジリエントにレンダリングできることを示します。
論文 参考訳(メタデータ) (2022-11-15T09:17:49Z) - Hardly Perceptible Trojan Attack against Neural Networks with Bit Flips [51.17948837118876]
ほとんど知覚できないトロイア攻撃(HPT)を呈する。
HPTは、加算ノイズと画素あたりのフロー場を利用して、知覚しにくいトロイの木像を作成する。
より優れた攻撃性能を達成するために,ビットフリップ,付加雑音,流れ場を協調的に最適化することを提案する。
論文 参考訳(メタデータ) (2022-07-27T09:56:17Z) - Quarantine: Sparsity Can Uncover the Trojan Attack Trigger for Free [126.15842954405929]
トロイの木馬攻撃はディープニューラルネットワーク(DNN)を脅かし、ほとんどのサンプルで正常に動作させるが、トリガーを付けた入力に対して操作された結果を生成する。
そこで我々は,まず,クリーンな入力において,ほぼ完全なトロイの木馬の情報のみを保存し,かつ,すでに孤立しているサブネットワークに埋め込まれたトリガを復元する,新しいトロイの木馬ネットワーク検出方式を提案する。
論文 参考訳(メタデータ) (2022-05-24T06:33:31Z) - CLEANN: Accelerated Trojan Shield for Embedded Neural Networks [32.99727805086791]
組込みディープニューラルネットワーク(DNN)アプリケーションに対するトロイの木馬のオンライン緩和を可能にする,最初のエンドツーエンドフレームワークであるCLEANNを提案する。
トロイの木馬攻撃は、訓練中にDNNにバックドアを注入することで動作し、推論中は特定のバックドアトリガーによってトロイの木馬が活性化される。
辞書学習とスパース近似を利用して、良性データの統計的挙動を特徴づけ、トロイの木馬のトリガーを同定する。
論文 参考訳(メタデータ) (2020-09-04T05:29:38Z) - Odyssey: Creation, Analysis and Detection of Trojan Models [91.13959405645959]
トロイの木馬攻撃は、一部のトレーニングサンプルにトリガーを挿入してトレーニングパイプラインを妨害し、トリガーを含むサンプルに対してのみ悪意ある動作をするようにモデルを訓練する。
既存のトロイの木馬検出器はトリガーの種類や攻撃について強い仮定をしている。
そこで本研究では,トロヤニング過程の影響を受け,本質的特性の分析に基づく検出器を提案する。
論文 参考訳(メタデータ) (2020-07-16T06:55:00Z) - An Embarrassingly Simple Approach for Trojan Attack in Deep Neural
Networks [59.42357806777537]
トロイの木馬攻撃は、ハッカーが挿入した隠れトリガーパターンに依存する、デプロイされたディープニューラルネットワーク(DNN)を攻撃することを目的としている。
そこで本研究では,有毒データセットの再学習モデルによりトロイの木馬の挙動を注入する,従来と異なる学習自由攻撃手法を提案する。
提案したTrojanNetには,(1)小さなトリガパターンによって起動し,他の信号に対してサイレントを維持する,(2)モデルに依存しない,ほとんどのDNNに注入可能な,(3)攻撃シナリオを劇的に拡張する,(3)訓練不要のメカニズムは従来のトロイの木馬攻撃方法と比較して大規模なトレーニング作業の削減など,いくつかの優れた特性がある。
論文 参考訳(メタデータ) (2020-06-15T04:58:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。