論文の概要: Spiking Neural Networks for Fast-Moving Object Detection on Neuromorphic Hardware Devices Using an Event-Based Camera
- arxiv url: http://arxiv.org/abs/2403.10677v1
- Date: Fri, 15 Mar 2024 20:53:10 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-19 22:24:30.283405
- Title: Spiking Neural Networks for Fast-Moving Object Detection on Neuromorphic Hardware Devices Using an Event-Based Camera
- Title(参考訳): イベントベースカメラを用いたニューロモーフィックハードウェアデバイス上での高速物体検出のためのスパイクニューラルネットワーク
- Authors: Andreas Ziegler, Karl Vetter, Thomas Gossard, Jonas Tebbe, Andreas Zell,
- Abstract要約: 本稿では,球検出のためのイベントベースカメラとスパイキングニューラルネットワーク(SNN)を組み合わせた新しいソリューションを提案する。
我々は、複数のニューロモルフィックエッジデバイスにまたがってSNNソリューションを実装し、それらの精度と実行時間の比較を行う。
ロボットのためのSNNソリューションの比較では、ニューロモルフィックエッジデバイス上のSNNがクローズドループロボットシステムでリアルタイムに動作可能であることも示している。
- 参考スコア(独自算出の注目度): 11.735290341808064
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Table tennis is a fast-paced and exhilarating sport that demands agility, precision, and fast reflexes. In recent years, robotic table tennis has become a popular research challenge for robot perception algorithms. Fast and accurate ball detection is crucial for enabling a robotic arm to rally the ball back successfully. Previous approaches have employed conventional frame-based cameras with Convolutional Neural Networks (CNNs) or traditional computer vision methods. In this paper, we propose a novel solution that combines an event-based camera with Spiking Neural Networks (SNNs) for ball detection. We use multiple state-of-the-art SNN frameworks and develop a SNN architecture for each of them, complying with their corresponding constraints. Additionally, we implement the SNN solution across multiple neuromorphic edge devices, conducting comparisons of their accuracies and run-times. This furnishes robotics researchers with a benchmark illustrating the capabilities achievable with each SNN framework and a corresponding neuromorphic edge device. Next to this comparison of SNN solutions for robots, we also show that an SNN on a neuromorphic edge device is able to run in real-time in a closed loop robotic system, a table tennis robot in our use case.
- Abstract(参考訳): 卓球(英: Table tennis)は、俊敏性、精度、高速反射を要求される速さで誇張されるスポーツである。
近年,ロボット認識アルゴリズムの研究課題としてロボット卓球が注目されている。
高速かつ正確なボール検出は、ロボットアームが舞踏会を成功させるためには不可欠だ。
これまでは、畳み込みニューラルネットワーク(CNN)や従来のコンピュータビジョン方式を用いたフレームベースのカメラが用いられてきた。
本稿では,球検出のためのイベントベースカメラとスパイキングニューラルネットワーク(SNN)を組み合わせた新しい手法を提案する。
我々は、最先端のSNNフレームワークを複数使用し、それぞれの制約に従ってSNNアーキテクチャを開発する。
さらに、複数のニューロモルフィックエッジデバイスにまたがってSNNソリューションを実装し、それらの精度と実行時間の比較を行う。
これにより、ロボット研究者は、それぞれのSNNフレームワークと対応するニューロモルフィックエッジデバイスで達成可能な能力を示すベンチマークが提供される。
ロボットのためのSNNソリューションの比較では、ニューラルネットワークエッジデバイス上のSNNが、我々のユースケースにおけるテーブルテニスロボットであるクローズドループロボットシステムにおいて、リアルタイムで動作可能であることも示している。
関連論文リスト
- Scalable Mechanistic Neural Networks [52.28945097811129]
長い時間的シーケンスを含む科学機械学習応用のための拡張ニューラルネットワークフレームワークを提案する。
元のメカニスティックニューラルネットワーク (MNN) を再構成することにより、計算時間と空間の複雑さを、それぞれ、列長に関して立方体と二次体から線形へと減少させる。
大規模な実験により、S-MNNは元のMNNと精度で一致し、計算資源を大幅に削減した。
論文 参考訳(メタデータ) (2024-10-08T14:27:28Z) - Sparsity-Aware Hardware-Software Co-Design of Spiking Neural Networks: An Overview [1.0499611180329804]
スパイキングニューラルネットワーク(SNN)は、生物学的ニューラルネットワークのスパースでイベント駆動的な性質にインスパイアされ、超低消費電力人工知能の可能性を秘めている。
スパースSNNのハードウェア・ソフトウェア共同設計について検討し,スパース表現,ハードウェアアーキテクチャ,トレーニング技術がハードウェア効率に与える影響について検討する。
本研究の目的は,スパースSNNの計算的優位性をフル活用した,組込みニューロモルフィックシステムへの道筋を解明することである。
論文 参考訳(メタデータ) (2024-08-26T17:22:11Z) - Single Neuromorphic Memristor closely Emulates Multiple Synaptic
Mechanisms for Energy Efficient Neural Networks [71.79257685917058]
我々はこれらのシナプス機能を本質的にエミュレートするSrTiO3に基づく膜状ナノデバイスを実証する。
これらのメムリスタは、安定かつエネルギー効率の良い運転を可能にする非定常低導電系で機能する。
論文 参考訳(メタデータ) (2024-02-26T15:01:54Z) - SpikingJelly: An open-source machine learning infrastructure platform
for spike-based intelligence [51.6943465041708]
スパイキングニューラルネットワーク(SNN)は、高エネルギー効率のニューロモルフィックチップに脳にインスパイアされたインテリジェンスを実現することを目的としている。
我々は、ニューロモルフィックデータセットの事前処理、深層SNNの構築、パラメータの最適化、およびニューロモルフィックチップへのSNNのデプロイのためのフルスタックツールキットをコントリビュートする。
論文 参考訳(メタデータ) (2023-10-25T13:15:17Z) - A Hybrid Neural Coding Approach for Pattern Recognition with Spiking
Neural Networks [53.31941519245432]
脳にインスパイアされたスパイクニューラルネットワーク(SNN)は、パターン認識タスクを解く上で有望な能力を示している。
これらのSNNは、情報表現に一様神経コーディングを利用する同質ニューロンに基づいている。
本研究では、SNNアーキテクチャは異種符号化方式を組み込むよう、均質に設計されるべきである、と論じる。
論文 参考訳(メタデータ) (2023-05-26T02:52:12Z) - Energy-Efficient Deployment of Machine Learning Workloads on
Neuromorphic Hardware [0.11744028458220425]
ディープラーニングハードウェアアクセラレータがいくつかリリースされ、ディープニューラルネットワーク(DNN)が消費する電力と面積の削減に特化している。
個別の時系列データで動作するスパイクニューラルネットワーク(SNN)は、特殊なニューロモルフィックイベントベース/非同期ハードウェアにデプロイすると、大幅な電力削減を実現することが示されている。
本研究では,事前学習したDNNをSNNに変換するための一般的なガイドを提供するとともに,ニューロモルフィックハードウェア上でのSNNの展開を改善するためのテクニックも提示する。
論文 参考訳(メタデータ) (2022-10-10T20:27:19Z) - A Resource-efficient Spiking Neural Network Accelerator Supporting
Emerging Neural Encoding [6.047137174639418]
スパイキングニューラルネットワーク(SNN)は、その低消費電力乗算自由コンピューティングにより、最近勢いを増している。
SNNは、大規模なモデルのための人工知能ニューラルネットワーク(ANN)と同様の精度に達するために、非常に長いスパイク列車(1000台まで)を必要とする。
ニューラルエンコーディングでSNNを効率的にサポートできる新しいハードウェアアーキテクチャを提案する。
論文 参考訳(メタデータ) (2022-06-06T10:56:25Z) - Object Detection with Spiking Neural Networks on Automotive Event Data [0.0]
我々は、イベントカメラから直接スパイキングニューラルネットワーク(SNN)を訓練し、高速で効率的な自動車組込みアプリケーションを設計することを提案する。
本稿では,2つの自動車イベントデータセットの実験を行い,スパイクニューラルネットワークのための最先端の分類結果を確立した。
論文 参考訳(メタデータ) (2022-05-09T14:39:47Z) - Event-based Video Reconstruction via Potential-assisted Spiking Neural
Network [48.88510552931186]
バイオインスパイアされたニューラルネットワークは、イベント駆動ハードウェア上での計算効率の向上につながる可能性がある。
完全スパイキングニューラルネットワーク(EVSNN)に基づくイベントベースビデオ再構成フレームワークを提案する。
スパイクニューロンは、そのような時間依存タスクを完了させるために有用な時間情報(メモリ)を格納する可能性がある。
論文 参考訳(メタデータ) (2022-01-25T02:05:20Z) - FPGA-optimized Hardware acceleration for Spiking Neural Networks [69.49429223251178]
本研究は,画像認識タスクに適用したオフライントレーニングによるSNN用ハードウェアアクセラレータの開発について述べる。
この設計はXilinx Artix-7 FPGAをターゲットにしており、利用可能なハードウェアリソースの40%を合計で使用している。
分類時間を3桁に短縮し、ソフトウェアと比較すると精度にわずか4.5%の影響を与えている。
論文 参考訳(メタデータ) (2022-01-18T13:59:22Z) - Learning from Event Cameras with Sparse Spiking Convolutional Neural
Networks [0.0]
畳み込みニューラルネットワーク(CNN)は現在、コンピュータビジョン問題のデファクトソリューションとなっている。
イベントカメラとスピーキングニューラルネットワーク(SNN)を用いたエンドツーエンドの生物学的インスパイアされたアプローチを提案する。
この手法は、一般的なディープラーニングフレームワークPyTorchを使用して、イベントデータに直接スパーススパイクニューラルネットワークのトレーニングを可能にする。
論文 参考訳(メタデータ) (2021-04-26T13:52:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。