論文の概要: SpikingJelly: An open-source machine learning infrastructure platform
for spike-based intelligence
- arxiv url: http://arxiv.org/abs/2310.16620v1
- Date: Wed, 25 Oct 2023 13:15:17 GMT
- ステータス: 処理完了
- システム内更新日: 2023-10-26 14:43:25.133203
- Title: SpikingJelly: An open-source machine learning infrastructure platform
for spike-based intelligence
- Title(参考訳): SpikingJelly:スパイクベースのインテリジェンスのためのオープンソースの機械学習基盤
- Authors: Wei Fang, Yanqi Chen, Jianhao Ding, Zhaofei Yu, Timoth\'ee Masquelier,
Ding Chen, Liwei Huang, Huihui Zhou, Guoqi Li, Yonghong Tian
- Abstract要約: スパイキングニューラルネットワーク(SNN)は、高エネルギー効率のニューロモルフィックチップに脳にインスパイアされたインテリジェンスを実現することを目的としている。
我々は、ニューロモルフィックデータセットの事前処理、深層SNNの構築、パラメータの最適化、およびニューロモルフィックチップへのSNNのデプロイのためのフルスタックツールキットをコントリビュートする。
- 参考スコア(独自算出の注目度): 51.6943465041708
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Spiking neural networks (SNNs) aim to realize brain-inspired intelligence on
neuromorphic chips with high energy efficiency by introducing neural dynamics
and spike properties. As the emerging spiking deep learning paradigm attracts
increasing interest, traditional programming frameworks cannot meet the demands
of the automatic differentiation, parallel computation acceleration, and high
integration of processing neuromorphic datasets and deployment. In this work,
we present the SpikingJelly framework to address the aforementioned dilemma. We
contribute a full-stack toolkit for pre-processing neuromorphic datasets,
building deep SNNs, optimizing their parameters, and deploying SNNs on
neuromorphic chips. Compared to existing methods, the training of deep SNNs can
be accelerated $11\times$, and the superior extensibility and flexibility of
SpikingJelly enable users to accelerate custom models at low costs through
multilevel inheritance and semiautomatic code generation. SpikingJelly paves
the way for synthesizing truly energy-efficient SNN-based machine intelligence
systems, which will enrich the ecology of neuromorphic computing.
- Abstract(参考訳): spiking neural networks (snns) は、神経動力学とスパイク特性を導入することで、高エネルギー効率のニューロモルフィックチップの脳にインスパイアされた知性を実現することを目的としている。
新興のスパイク深層学習パラダイムへの関心が高まる中、従来のプログラミングフレームワークは、自動微分、並列計算の高速化、ニューロモルフィックデータセットの処理とデプロイメントの高度な統合といった要求を満たすことができない。
本稿では、前述のジレンマに対処するためのSpkingJellyフレームワークを提案する。
我々は、ニューロモルフィックデータセットの事前処理、深層SNNの構築、パラメータの最適化、ニューロモルフィックチップへのSNNのデプロイのためのフルスタックツールキットに貢献する。
既存の方法と比較して、ディープSNNのトレーニングは11\times$で加速でき、SpykingJellyの優れた拡張性と柔軟性により、ユーザはマルチレベルの継承と半自動コード生成を通じて、低コストでカスタムモデルをアクセラレーションできる。
SpikingJellyは、真にエネルギー効率の良いSNNベースのマシンインテリジェンスシステムを合成する方法を開拓し、ニューロモルフィックコンピューティングのエコロジーを豊かにする。
関連論文リスト
- Towards Efficient Deployment of Hybrid SNNs on Neuromorphic and Edge AI Hardware [0.493599216374976]
本稿では,ニューロモルフィックとエッジコンピューティングの相乗的ポテンシャルを考察し,動的視覚センサが捉えたデータ処理に適した多目的機械学習(ML)システムを構築する。
我々は、PyTorchとLavaフレームワークを使用して、スパイキングニューラルネットワーク(SNN)と人工ニューラルネットワーク(ANN)を混合してハイブリッドモデルを構築し、訓練する。
論文 参考訳(メタデータ) (2024-07-11T17:40:39Z) - Direct Training High-Performance Deep Spiking Neural Networks: A Review of Theories and Methods [33.377770671553336]
スパイキングニューラルネットワーク(SNN)は、人工ニューラルネットワーク(ANN)の代替として有望なエネルギー効率を提供する
本稿では,より深いSNNを高い性能で訓練するための理論と手法を要約する新しい視点を提供する。
論文 参考訳(メタデータ) (2024-05-06T09:58:54Z) - Spyx: A Library for Just-In-Time Compiled Optimization of Spiking Neural
Networks [0.08965418284317034]
Spiking Neural Networks(SNN)は、小さくて低消費電力なハードウェアフットプリントによるエネルギー効率の向上を提供する。
本稿では、JAXで設計された新しい軽量SNNシミュレーションおよび最適化ライブラリSpyxを紹介する。
論文 参考訳(メタデータ) (2024-02-29T09:46:44Z) - A Hybrid Neural Coding Approach for Pattern Recognition with Spiking
Neural Networks [53.31941519245432]
脳にインスパイアされたスパイクニューラルネットワーク(SNN)は、パターン認識タスクを解く上で有望な能力を示している。
これらのSNNは、情報表現に一様神経コーディングを利用する同質ニューロンに基づいている。
本研究では、SNNアーキテクチャは異種符号化方式を組み込むよう、均質に設計されるべきである、と論じる。
論文 参考訳(メタデータ) (2023-05-26T02:52:12Z) - Intelligence Processing Units Accelerate Neuromorphic Learning [52.952192990802345]
スパイキングニューラルネットワーク(SNN)は、エネルギー消費と遅延の観点から、桁違いに改善されている。
我々は、カスタムSNN PythonパッケージsnnTorchのIPU最適化リリースを提示する。
論文 参考訳(メタデータ) (2022-11-19T15:44:08Z) - Deep Reinforcement Learning with Spiking Q-learning [51.386945803485084]
スパイクニューラルネットワーク(SNN)は、少ないエネルギー消費で人工知能(AI)を実現することが期待されている。
SNNと深部強化学習(RL)を組み合わせることで、現実的な制御タスクに有望なエネルギー効率の方法を提供する。
論文 参考訳(メタデータ) (2022-01-21T16:42:11Z) - Mapping and Validating a Point Neuron Model on Intel's Neuromorphic
Hardware Loihi [77.34726150561087]
インテルの第5世代ニューロモルフィックチップ「Loihi」の可能性について検討する。
Loihiは、脳内のニューロンをエミュレートするスパイキングニューラルネットワーク(SNN)という新しいアイデアに基づいている。
Loihiは従来のシミュレーションを非常に効率的に再現し、ネットワークが大きくなるにつれて、時間とエネルギーの両方のパフォーマンスにおいて顕著にスケールする。
論文 参考訳(メタデータ) (2021-09-22T16:52:51Z) - In-Hardware Learning of Multilayer Spiking Neural Networks on a
Neuromorphic Processor [6.816315761266531]
この研究は、生物学的に妥当な局所更新規則を持つスパイクベースのバックプロパゲーションアルゴリズムを示し、ニューロモルフィックハードウェアの制約に適合するように適応する。
このアルゴリズムはIntel Loihiチップ上に実装されており、モバイルアプリケーション用の多層SNNの低消費電力ハードウェアによるオンライン学習を可能にする。
論文 参考訳(メタデータ) (2021-05-08T09:22:21Z) - Neuromorphic Processing and Sensing: Evolutionary Progression of AI to
Spiking [0.0]
スパイキングニューラルネットワークアルゴリズムは、計算と電力要求の一部を利用して高度な人工知能を実装することを約束する。
本稿では,スパイクに基づくニューロモルフィック技術の理論的研究について解説し,ハードウェアプロセッサ,ソフトウェアプラットフォーム,ニューロモルフィックセンシングデバイスの現状について概説する。
プログレクションパスは、現在の機械学習スペシャリストがスキルセットを更新し、現在の世代のディープニューラルネットワークからSNNへの分類または予測モデルを作成するために舗装されている。
論文 参考訳(メタデータ) (2020-07-10T20:54:42Z) - Rectified Linear Postsynaptic Potential Function for Backpropagation in
Deep Spiking Neural Networks [55.0627904986664]
スパイキングニューラルネットワーク(SNN)は、時間的スパイクパターンを用いて情報を表現し、伝達する。
本稿では,情報符号化,シナプス可塑性,意思決定におけるスパイクタイミングダイナミクスの寄与について検討し,将来のDeepSNNやニューロモルフィックハードウェアシステムの設計への新たな視点を提供する。
論文 参考訳(メタデータ) (2020-03-26T11:13:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。