論文の概要: Cannabis Seed Variant Detection using Faster R-CNN
- arxiv url: http://arxiv.org/abs/2403.10722v1
- Date: Fri, 15 Mar 2024 22:49:47 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-19 22:04:53.222893
- Title: Cannabis Seed Variant Detection using Faster R-CNN
- Title(参考訳): 高速R-CNNを用いた大麻種子変異検出
- Authors: Toqi Tahamid Sarker, Taminul Islam, Khaled R Ahmed,
- Abstract要約: 本稿では,現在最先端のオブジェクト検出モデルであるFaster R-CNNを用いて,大麻種子の変種検出について検討する。
タイの大麻種子データセットに,17種類の異なるクラスからなるモデルを実装した。
各種測定値のパフォーマンスを比較し,mAPスコア94.08%,F1スコア95.66%を達成して,より高速な6つのR-CNNモデルを評価する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Analyzing and detecting cannabis seed variants is crucial for the agriculture industry. It enables precision breeding, allowing cultivators to selectively enhance desirable traits. Accurate identification of seed variants also ensures regulatory compliance, facilitating the cultivation of specific cannabis strains with defined characteristics, ultimately improving agricultural productivity and meeting diverse market demands. This paper presents a study on cannabis seed variant detection by employing a state-of-the-art object detection model Faster R-CNN. This study implemented the model on a locally sourced cannabis seed dataset in Thailand, comprising 17 distinct classes. We evaluate six Faster R-CNN models by comparing performance on various metrics and achieving a mAP score of 94.08\% and an F1 score of 95.66\%. This paper presents the first known application of deep neural network object detection models to the novel task of visually identifying cannabis seed types.
- Abstract(参考訳): 大麻の種変異の分析と検出は農業にとって不可欠である。
精密な育種を可能にし、栽培者は好適な形質を選択的に増強することができる。
種子品種の正確な同定はまた、規制の遵守を保証し、特定の大麻株を特定の特性で培養し、最終的には農業生産性を改善し、多様な市場需要を満たす。
本稿では,現在最先端のオブジェクト検出モデルであるFaster R-CNNを用いて,大麻種子の変種検出について検討する。
本研究は,タイ国で発生した大麻種子データセットに17種類の異なるクラスからなるモデルを実装した。
6つの高速R-CNNモデルについて,各種指標の性能を比較し,mAPスコア94.08\%,F1スコア95.66\%を達成して評価した。
本稿では,大麻の種型を視覚的に識別する新しい課題に対して,ディープニューラルネットワークオブジェクト検出モデルの最初の応用例を示す。
関連論文リスト
- Automated Classification of Dry Bean Varieties Using XGBoost and SVM Models [0.0]
本稿では,機械学習モデルを用いた7種類の乾燥豆の自動分類について比較検討する。
XGBoostとSVMのモデルはそれぞれ94.00%と94.39%の正確な分類率を達成した。
本研究は, 種子品質制御と収量最適化を効果的に支援できることを実証し, 精密農業への取り組みの活発化に寄与する。
論文 参考訳(メタデータ) (2024-08-02T13:05:33Z) - High-Throughput Phenotyping using Computer Vision and Machine Learning [0.0]
我々はオークリッジ国立研究所が提供した1,672枚のPopulus Trichocarpaの画像と白ラベルで治療を行った。
光文字認識(OCR)は、植物上でこれらのラベルを読むために用いられた。
機械学習モデルを用いて,これらの分類に基づいて処理を予測し,解析されたEXIFタグを用いて葉の大きさと表現型間の相関を見いだした。
論文 参考訳(メタデータ) (2024-07-08T19:46:31Z) - Semi-Supervised Weed Detection for Rapid Deployment and Enhanced Efficiency [2.8444649426160304]
本稿では,2つの主要成分からなる半教師付き雑草検出手法を提案する。
まず,異なる規模の雑草の特徴を捉えるために,マルチスケールの特徴表現手法を用いる。
第2に、トレーニング中にラベル付き画像の小さなセットを活用する適応的な擬似ラベル割り当て戦略を提案する。
論文 参考訳(メタデータ) (2024-05-12T23:34:06Z) - Drug Synergistic Combinations Predictions via Large-Scale Pre-Training
and Graph Structure Learning [82.93806087715507]
薬物併用療法は、より有効で安全性の低い疾患治療のための確立された戦略である。
ディープラーニングモデルは、シナジスティックな組み合わせを発見する効率的な方法として登場した。
我々のフレームワークは、他のディープラーニングベースの手法と比較して最先端の結果を達成する。
論文 参考訳(メタデータ) (2023-01-14T15:07:43Z) - Semantic Image Segmentation with Deep Learning for Vine Leaf Phenotyping [59.0626764544669]
本研究では,ブドウの葉のイメージを意味的にセグメント化するためにDeep Learning法を用いて,葉の表現型自動検出システムを開発した。
私たちの研究は、成長や開発のような動的な特性を捉え定量化できる植物ライフサイクルのモニタリングに寄与します。
論文 参考訳(メタデータ) (2022-10-24T14:37:09Z) - MetaRF: Differentiable Random Forest for Reaction Yield Prediction with
a Few Trails [58.47364143304643]
本稿では,反応収率予測問題に焦点をあてる。
筆者らはまず,数発の収量予測のために特別に設計された,注意に基づく識別可能なランダム森林モデルであるMetaRFを紹介した。
数発の学習性能を改善するために,さらに次元還元に基づくサンプリング手法を導入する。
論文 参考訳(メタデータ) (2022-08-22T06:40:13Z) - Fake It Till You Make It: Near-Distribution Novelty Detection by
Score-Based Generative Models [54.182955830194445]
既存のモデルは、いわゆる"近く分布"設定で失敗するか、劇的な低下に直面します。
本稿では, スコアに基づく生成モデルを用いて, 合成近分布異常データを生成することを提案する。
本手法は,9つのノベルティ検出ベンチマークにおいて,近分布ノベルティ検出を6%改善し,最先端のノベルティ検出を1%から5%パスする。
論文 参考訳(メタデータ) (2022-05-28T02:02:53Z) - Performance Evaluation of Deep Transfer Learning on Multiclass
Identification of Common Weed Species in Cotton Production Systems [3.427330019009861]
本稿では,アメリカ南部の綿花生産システムに特有の雑草を同定するために,DTL(Deep Transfer Learning)を総合的に評価する。
自然光条件および雑草生育段階の異なる15種類の雑草群5187色画像からなる雑草識別用データセットを作成した。
DTLはF1スコアの高い分類精度を95%以上達成し、モデル間でのトレーニング時間(2.5時間未満)を合理的に短縮する必要があった。
論文 参考訳(メタデータ) (2021-10-11T01:51:48Z) - A CNN Approach to Simultaneously Count Plants and Detect Plantation-Rows
from UAV Imagery [56.10033255997329]
畳み込みニューラルネットワーク(CNN)を用いた新しい深層学習手法を提案する。
高度に乾燥したプランテーション構成を考慮した植物を数えながら、同時にプランテーション・ロウを検出し、配置する。
提案手法は、異なる種類の作物のUAV画像において、植物と植物をカウントおよびジオロケートするための最先端の性能を達成した。
論文 参考訳(メタデータ) (2020-12-31T18:51:17Z) - Crop and weed classification based on AutoML [2.1300809288243188]
CNNモデルは、文献に報告されている95%以上の精度で作物と雑草の分類において、すでに重要な役割を担っている。
本稿では,作物と雑草の分類に新たな目的関数を付加した自律型機械学習を適用し,精度の向上と農作物の伐採率の低下を図った。
論文 参考訳(メタデータ) (2020-10-28T02:35:17Z) - Two-View Fine-grained Classification of Plant Species [66.75915278733197]
本研究では,2視点の葉のイメージ表現に基づく新しい手法と,植物種の粒度認識のための階層的分類戦略を提案する。
シームズ畳み込みニューラルネットワークに基づく深度測定は、多数のトレーニングサンプルへの依存を減らし、新しい植物種に拡張性を持たせるために用いられる。
論文 参考訳(メタデータ) (2020-05-18T21:57:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。