論文の概要: WeedVision: Multi-Stage Growth and Classification of Weeds using DETR and RetinaNet for Precision Agriculture
- arxiv url: http://arxiv.org/abs/2502.14890v1
- Date: Sun, 16 Feb 2025 20:49:22 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-02 02:51:32.897583
- Title: WeedVision: Multi-Stage Growth and Classification of Weeds using DETR and RetinaNet for Precision Agriculture
- Title(参考訳): WeedVision: 精密農業のためのDETRとRetinaNetを用いた雑草の多段階成長と分類
- Authors: Taminul Islam, Toqi Tahamid Sarker, Khaled R Ahmed, Cristiana Bernardi Rankrape, Karla Gage,
- Abstract要約: 本研究は対象検出モデルを用いて174クラスにわたる16種の雑草を同定・分類する。
203,567枚の画像からなる頑健なデータセットを開発した。
RetinaNetは優れた性能を示し、トレーニングセットで0.907、テストセットで0.904の平均平均精度(mAP)を達成した。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Weed management remains a critical challenge in agriculture, where weeds compete with crops for essential resources, leading to significant yield losses. Accurate detection of weeds at various growth stages is crucial for effective management yet challenging for farmers, as it requires identifying different species at multiple growth phases. This research addresses these challenges by utilizing advanced object detection models, specifically, the Detection Transformer (DETR) with a ResNet50 backbone and RetinaNet with a ResNeXt101 backbone, to identify and classify 16 weed species of economic concern across 174 classes, spanning their 11 weeks growth stages from seedling to maturity. A robust dataset comprising 203,567 images was developed, meticulously labeled by species and growth stage. The models were rigorously trained and evaluated, with RetinaNet demonstrating superior performance, achieving a mean Average Precision (mAP) of 0.907 on the training set and 0.904 on the test set, compared to DETR's mAP of 0.854 and 0.840, respectively. RetinaNet also outperformed DETR in recall and inference speed of 7.28 FPS, making it more suitable for real time applications. Both models showed improved accuracy as plants matured. This research provides crucial insights for developing precise, sustainable, and automated weed management strategies, paving the way for real time species specific detection systems and advancing AI-assisted agriculture through continued innovation in model development and early detection accuracy.
- Abstract(参考訳): 雑草管理は農業において重要な課題であり、雑草は農作物と本質的な資源を競い合い、かなりの収量を失う。
様々な成長段階における雑草の正確な検出は、農家にとって効果的な管理には不可欠であるが、複数の成長段階において異なる種を特定する必要があるため、農家にとっては困難である。
本研究は、先進的な物体検出モデル、特にResNet50バックボーンとResNeXt101バックボーンを備えたRetinaNetを用いた検出トランスフォーマー(DETR)を用いて、174クラスにわたる16種の雑草の経済問題を特定し分類し、育苗から成熟までの11週間の成長段階にまたがる。
203,567枚の画像からなる頑健なデータセットを開発した。
RetinaNetは、トレーニングセットで0.907の平均精度(mAP)を、テストセットで0.904を、DeTRのmAPで0.854、0.840をそれぞれ達成した。
RetinaNetは7.28 FPSのリコールと推論の速度でDETRより優れており、リアルタイムアプリケーションに適している。
どちらのモデルも、植物が成熟するにつれて精度が向上した。
この研究は、精密で持続的で自動化された雑草管理戦略の開発、リアルタイム種特定検出システムの構築、モデル開発と早期検出精度の継続的な革新を通じてAI支援農業を推進するための重要な洞察を提供する。
関連論文リスト
- Multispectral Remote Sensing for Weed Detection in West Australian Agricultural Lands [3.6284577335311563]
オーストラリア西部のコンディニン地域は、広範囲にわたる雑草の寄生による農業上の大きな課題に直面しており、経済的損失と生態学的影響を引き起こしている。
本研究は, 精密農業の実践を促進するため, 雑草検出のための多スペクトルリモートセンシングフレームワークを構築した。
無人航空機は、4年間にわたって2つの実験領域から生のマルチスペクトルデータを収集するために用いられ、0.6046 km2をカバーし、地上の真実の注釈は、手動で雑草や作物をラベル付けするためにGPS対応車両で作成された。
論文 参考訳(メタデータ) (2025-02-12T07:01:42Z) - CMAViT: Integrating Climate, Managment, and Remote Sensing Data for Crop Yield Estimation with Multimodel Vision Transformers [0.0]
我々はCMAViT(Climate-Management Aware Vision Transformer)と呼ばれる深層学習に基づくマルチモデルを導入する。
CMAViTは、リモートセンシング画像と短期気象データを活用することにより、空間データと時間データの両方を統合する。
UNet-ConvLSTMのような従来のモデルよりも優れ、空間的変動のキャプチャと収差予測に優れています。
論文 参考訳(メタデータ) (2024-11-25T23:34:53Z) - Cannabis Seed Variant Detection using Faster R-CNN [0.0]
本稿では,現在最先端のオブジェクト検出モデルであるFaster R-CNNを用いて,大麻種子の変種検出について検討する。
タイの大麻種子データセットに,17種類の異なるクラスからなるモデルを実装した。
各種測定値のパフォーマンスを比較し,mAPスコア94.08%,F1スコア95.66%を達成して,より高速な6つのR-CNNモデルを評価する。
論文 参考訳(メタデータ) (2024-03-15T22:49:47Z) - HarvestNet: A Dataset for Detecting Smallholder Farming Activity Using
Harvest Piles and Remote Sensing [50.4506590177605]
HarvestNetは、2020-2023年のエチオピアのティグレイとアムハラの農場の存在をマッピングするためのデータセットである。
本研究は,多くの小作システムの特徴ある収穫杭の検出に基づく新しい手法を提案する。
本研究は, 農作物のリモートセンシングが, 食品の安全地帯において, よりタイムリーかつ正確な農地評価に寄与することが示唆された。
論文 参考訳(メタデータ) (2023-08-23T11:03:28Z) - CWD30: A Comprehensive and Holistic Dataset for Crop Weed Recognition in
Precision Agriculture [1.64709990449384]
精密農業における作物雑草認識タスクに適した大規模・多種多様・包括的・階層的データセットであるCWD30データセットを提示する。
CWD30は20種の雑草と10種の高解像度画像を219,770枚以上、様々な成長段階、複数の視角、環境条件を含む。
データセットの階層的な分類は、きめ細かい分類を可能にし、より正確で堅牢で一般化可能なディープラーニングモデルの開発を促進する。
論文 参考訳(メタデータ) (2023-05-17T09:39:01Z) - Agave crop segmentation and maturity classification with deep learning
data-centric strategies using very high-resolution satellite imagery [101.18253437732933]
超高解像度衛星画像を用いたAgave tequilana Weber azul crop segmentation and mature classificationを提案する。
実世界の深層学習問題を,作物の選別という非常に具体的な文脈で解決する。
結果として得られた正確なモデルにより、大規模地域で生産予測を行うことができる。
論文 参考訳(メタデータ) (2023-03-21T03:15:29Z) - End-to-end deep learning for directly estimating grape yield from
ground-based imagery [53.086864957064876]
本研究は, ブドウ畑の収量推定に深層学習と併用した近位画像の応用を実証する。
オブジェクト検出、CNN回帰、トランスフォーマーモデルという3つのモデルアーキテクチャがテストされた。
本研究は,ブドウの収量予測における近位画像と深層学習の適用性を示した。
論文 参考訳(メタデータ) (2022-08-04T01:34:46Z) - Performance Evaluation of Deep Transfer Learning on Multiclass
Identification of Common Weed Species in Cotton Production Systems [3.427330019009861]
本稿では,アメリカ南部の綿花生産システムに特有の雑草を同定するために,DTL(Deep Transfer Learning)を総合的に評価する。
自然光条件および雑草生育段階の異なる15種類の雑草群5187色画像からなる雑草識別用データセットを作成した。
DTLはF1スコアの高い分類精度を95%以上達成し、モデル間でのトレーニング時間(2.5時間未満)を合理的に短縮する必要があった。
論文 参考訳(メタデータ) (2021-10-11T01:51:48Z) - Potato Crop Stress Identification in Aerial Images using Deep
Learning-based Object Detection [60.83360138070649]
本稿では, 深層ニューラルネットワークを用いたジャガイモの空中画像解析手法を提案する。
主な目的は、植物レベルでの健康作物とストレス作物の自動空間認識を実証することである。
実験により、フィールド画像中の健康植物とストレス植物を識別し、平均Dice係数0.74を達成できることを示した。
論文 参考訳(メタデータ) (2021-06-14T21:57:40Z) - A CNN Approach to Simultaneously Count Plants and Detect Plantation-Rows
from UAV Imagery [56.10033255997329]
畳み込みニューラルネットワーク(CNN)を用いた新しい深層学習手法を提案する。
高度に乾燥したプランテーション構成を考慮した植物を数えながら、同時にプランテーション・ロウを検出し、配置する。
提案手法は、異なる種類の作物のUAV画像において、植物と植物をカウントおよびジオロケートするための最先端の性能を達成した。
論文 参考訳(メタデータ) (2020-12-31T18:51:17Z) - Learning from Data to Optimize Control in Precision Farming [77.34726150561087]
特集は、統計的推論、機械学習、精密農業のための最適制御における最新の発展を示す。
衛星の位置決めとナビゲーションとそれに続くInternet-of-Thingsは、リアルタイムで農業プロセスの最適化に使用できる膨大な情報を生成する。
論文 参考訳(メタデータ) (2020-07-07T12:44:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。