Bidirectional Multi-Step Domain Generalization for Visible-Infrared Person Re-Identification
- URL: http://arxiv.org/abs/2403.10782v2
- Date: Mon, 10 Feb 2025 05:04:53 GMT
- Title: Bidirectional Multi-Step Domain Generalization for Visible-Infrared Person Re-Identification
- Authors: Mahdi Alehdaghi, Pourya Shamsolmoali, Rafael M. O. Cruz, Eric Granger,
- Abstract summary: A key challenge in visible-infrared person re-identification (V-I ReID) is training a backbone model capable of effectively addressing the significant discrepancies across modalities.
This paper introduces Bidirectional Multi-step Domain Generalization, a novel approach for unifying feature representations across diverse modalities.
Experiments conducted on V-I ReID datasets indicate that our BMDG approach can outperform state-of-the-art part-based and intermediate generation methods.
- Score: 12.14946364107671
- License:
- Abstract: A key challenge in visible-infrared person re-identification (V-I ReID) is training a backbone model capable of effectively addressing the significant discrepancies across modalities. State-of-the-art methods that generate a single intermediate bridging domain are often less effective, as this generated domain may not adequately capture sufficient common discriminant information. This paper introduces Bidirectional Multi-step Domain Generalization (BMDG), a novel approach for unifying feature representations across diverse modalities. BMDG creates multiple virtual intermediate domains by learning and aligning body part features extracted from both I and V modalities. In particular, our method aims to minimize the cross-modal gap in two steps. First, BMDG aligns modalities in the feature space by learning shared and modality-invariant body part prototypes from V and I images. Then, it generalizes the feature representation by applying bidirectional multi-step learning, which progressively refines feature representations in each step and incorporates more prototypes from both modalities. Based on these prototypes, multiple bridging steps enhance the feature representation. Experiments conducted on V-I ReID datasets indicate that our BMDG approach can outperform state-of-the-art part-based and intermediate generation methods, and can be integrated into other part-based methods to enhance their V-I ReID performance. (Our code is available at:https:/alehdaghi.github.io/BMDG/ )
Related papers
- Multisource Collaborative Domain Generalization for Cross-Scene Remote Sensing Image Classification [57.945437355714155]
Cross-scene image classification aims to transfer prior knowledge of ground materials to annotate regions with different distributions.
Existing approaches focus on single-source domain generalization to unseen target domains.
We propose a novel multi-source collaborative domain generalization framework (MS-CDG) based on homogeneity and heterogeneity characteristics of multi-source remote sensing data.
arXiv Detail & Related papers (2024-12-05T06:15:08Z) - Generalize or Detect? Towards Robust Semantic Segmentation Under Multiple Distribution Shifts [56.57141696245328]
In open-world scenarios, where both novel classes and domains may exist, an ideal segmentation model should detect anomaly classes for safety.
Existing methods often struggle to distinguish between domain-level and semantic-level distribution shifts.
arXiv Detail & Related papers (2024-11-06T11:03:02Z) - Aligned Divergent Pathways for Omni-Domain Generalized Person Re-Identification [30.208890289394994]
Person ReID has advanced significantly in fully supervised and domain generalized Person R e ID.
We propose a paradigm Omni-Domain Generalization Person ReID, referred to as ODG-ReID.
Our method converts a base architecture into a multi-branch structure by copying the tail of the original backbone.
arXiv Detail & Related papers (2024-10-11T02:36:11Z) - Prototype-Driven Multi-Feature Generation for Visible-Infrared Person Re-identification [11.664820595258988]
Primary challenges in visible-infrared person re-identification arise from the differences between visible (vis) and infrared (ir) images.
Existing methods often rely on horizontal partitioning to align part-level features, which can introduce inaccuracies.
We propose a novel Prototype-Driven Multi-feature generation framework (PDM) aimed at mitigating cross-modal discrepancies.
arXiv Detail & Related papers (2024-09-09T14:12:23Z) - Unity in Diversity: Multi-expert Knowledge Confrontation and Collaboration for Generalizable Vehicle Re-identification [60.20318058777603]
Generalizable vehicle re-identification (ReID) seeks to develop models that can adapt to unknown target domains without the need for fine-tuning or retraining.
Previous works have mainly focused on extracting domain-invariant features by aligning data distributions between source domains.
We propose a two-stage Multi-expert Knowledge Confrontation and Collaboration (MiKeCoCo) method to solve this unique problem.
arXiv Detail & Related papers (2024-07-10T04:06:39Z) - PracticalDG: Perturbation Distillation on Vision-Language Models for Hybrid Domain Generalization [24.413415998529754]
We propose a new benchmark Hybrid Domain Generalization (HDG) and a novel metric $H2$-CV, which construct various splits to assess the robustness of algorithms.
Our method outperforms state-of-the-art algorithms on multiple datasets, especially improving the robustness when confronting data scarcity.
arXiv Detail & Related papers (2024-04-13T13:41:13Z) - HCVP: Leveraging Hierarchical Contrastive Visual Prompt for Domain
Generalization [69.33162366130887]
Domain Generalization (DG) endeavors to create machine learning models that excel in unseen scenarios by learning invariant features.
We introduce a novel method designed to supplement the model with domain-level and task-specific characteristics.
This approach aims to guide the model in more effectively separating invariant features from specific characteristics, thereby boosting the generalization.
arXiv Detail & Related papers (2024-01-18T04:23:21Z) - Causality-based Dual-Contrastive Learning Framework for Domain
Generalization [16.81075442901155]
Domain Generalization (DG) is essentially a sub-branch of out-of-distribution generalization.
In this paper, we propose a Dual-Contrastive Learning (DCL) module on feature and prototype contrast.
We also introduce a Similarity-based Hard-pair Mining (SHM) strategy to leverage information on diversity shift.
arXiv Detail & Related papers (2023-01-22T13:07:24Z) - A Novel Mix-normalization Method for Generalizable Multi-source Person
Re-identification [49.548815417844786]
Person re-identification (Re-ID) has achieved great success in the supervised scenario.
It is difficult to directly transfer the supervised model to arbitrary unseen domains due to the model overfitting to the seen source domains.
We propose MixNorm, which consists of domain-aware mix-normalization (DMN) and domain-ware center regularization (DCR)
arXiv Detail & Related papers (2022-01-24T18:09:38Z) - MSO: Multi-Feature Space Joint Optimization Network for RGB-Infrared
Person Re-Identification [35.97494894205023]
RGB-infrared cross-modality person re-identification (ReID) task aims to recognize the images of the same identity between the visible modality and the infrared modality.
Existing methods mainly use a two-stream architecture to eliminate the discrepancy between the two modalities in the final common feature space.
We present a novel multi-feature space joint optimization (MSO) network, which can learn modality-sharable features in both the single-modality space and the common space.
arXiv Detail & Related papers (2021-10-21T16:45:23Z) - Multi-Domain Adversarial Feature Generalization for Person
Re-Identification [52.835955258959785]
We propose a multi-dataset feature generalization network (MMFA-AAE)
It is capable of learning a universal domain-invariant feature representation from multiple labeled datasets and generalizing it to unseen' camera systems.
It also surpasses many state-of-the-art supervised methods and unsupervised domain adaptation methods by a large margin.
arXiv Detail & Related papers (2020-11-25T08:03:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.