Aligned Divergent Pathways for Omni-Domain Generalized Person Re-Identification
- URL: http://arxiv.org/abs/2410.08466v1
- Date: Fri, 11 Oct 2024 02:36:11 GMT
- Title: Aligned Divergent Pathways for Omni-Domain Generalized Person Re-Identification
- Authors: Eugene P. W. Ang, Shan Lin, Alex C. Kot,
- Abstract summary: Person ReID has advanced significantly in fully supervised and domain generalized Person R e ID.
We propose a paradigm Omni-Domain Generalization Person ReID, referred to as ODG-ReID.
Our method converts a base architecture into a multi-branch structure by copying the tail of the original backbone.
- Score: 30.208890289394994
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Person Re-identification (Person ReID) has advanced significantly in fully supervised and domain generalized Person R e ID. However, methods developed for one task domain transfer poorly to the other. An ideal Person ReID method should be effective regardless of the number of domains involved in training or testing. Furthermore, given training data from the target domain, it should perform at least as well as state-of-the-art (SOTA) fully supervised Person ReID methods. We call this paradigm Omni-Domain Generalization Person ReID, referred to as ODG-ReID, and propose a way to achieve this by expanding compatible backbone architectures into multiple diverse pathways. Our method, Aligned Divergent Pathways (ADP), first converts a base architecture into a multi-branch structure by copying the tail of the original backbone. We design our module Dynamic Max-Deviance Adaptive Instance Normalization (DyMAIN) that encourages learning of generalized features that are robust to omni-domain directions and apply DyMAIN to the branches of ADP. Our proposed Phased Mixture-of-Cosines (PMoC) coordinates a mix of stable and turbulent learning rate schedules among branches for further diversified learning. Finally, we realign the feature space between branches with our proposed Dimensional Consistency Metric Loss (DCML). ADP outperforms the state-of-the-art (SOTA) results for multi-source domain generalization and supervised ReID within the same domain. Furthermore, our method demonstrates improvement on a wide range of single-source domain generalization benchmarks, achieving Omni-Domain Generalization over Person ReID tasks.
Related papers
- Diverse Deep Feature Ensemble Learning for Omni-Domain Generalized Person Re-identification [30.208890289394994]
Person ReID methods experience a significant drop in performance when trained and tested across different datasets.
Our research reveals that domain generalization methods significantly underperform single-domain supervised methods on single dataset benchmarks.
We propose a way to achieve ODG-ReID by creating deep feature diversity with self-ensembles.
arXiv Detail & Related papers (2024-10-11T02:27:11Z) - Adaptive Domain Generalization via Online Disagreement Minimization [17.215683606365445]
Domain Generalization aims to safely transfer a model to unseen target domains.
AdaODM adaptively modifies the source model at test time for different target domains.
Results show AdaODM stably improves the generalization capacity on unseen domains.
arXiv Detail & Related papers (2022-08-03T11:51:11Z) - Dynamic Instance Domain Adaptation [109.53575039217094]
Most studies on unsupervised domain adaptation assume that each domain's training samples come with domain labels.
We develop a dynamic neural network with adaptive convolutional kernels to generate instance-adaptive residuals to adapt domain-agnostic deep features to each individual instance.
Our model, dubbed DIDA-Net, achieves state-of-the-art performance on several commonly used single-source and multi-source UDA datasets.
arXiv Detail & Related papers (2022-03-09T20:05:54Z) - A Novel Mix-normalization Method for Generalizable Multi-source Person
Re-identification [49.548815417844786]
Person re-identification (Re-ID) has achieved great success in the supervised scenario.
It is difficult to directly transfer the supervised model to arbitrary unseen domains due to the model overfitting to the seen source domains.
We propose MixNorm, which consists of domain-aware mix-normalization (DMN) and domain-ware center regularization (DCR)
arXiv Detail & Related papers (2022-01-24T18:09:38Z) - META: Mimicking Embedding via oThers' Aggregation for Generalizable
Person Re-identification [68.39849081353704]
Domain generalizable (DG) person re-identification (ReID) aims to test across unseen domains without access to the target domain data at training time.
This paper presents a new approach called Mimicking Embedding via oThers' Aggregation (META) for DG ReID.
arXiv Detail & Related papers (2021-12-16T08:06:50Z) - Unsupervised Multi-Source Domain Adaptation for Person Re-Identification [39.817734080890695]
Unsupervised domain adaptation (UDA) methods for person re-identification (re-ID) aim at transferring re-ID knowledge from labeled source data to unlabeled target data.
We introduce the multi-source concept into UDA person re-ID field, where multiple source datasets are used during training.
The proposed method outperforms state-of-the-art UDA person re-ID methods by a large margin, and even achieves comparable performance to the supervised approaches without any post-processing techniques.
arXiv Detail & Related papers (2021-04-27T03:33:35Z) - Cluster, Split, Fuse, and Update: Meta-Learning for Open Compound Domain
Adaptive Semantic Segmentation [102.42638795864178]
We propose a principled meta-learning based approach to OCDA for semantic segmentation.
We cluster target domain into multiple sub-target domains by image styles, extracted in an unsupervised manner.
A meta-learner is thereafter deployed to learn to fuse sub-target domain-specific predictions, conditioned upon the style code.
We learn to online update the model by model-agnostic meta-learning (MAML) algorithm, thus to further improve generalization.
arXiv Detail & Related papers (2020-12-15T13:21:54Z) - Multi-Domain Adversarial Feature Generalization for Person
Re-Identification [52.835955258959785]
We propose a multi-dataset feature generalization network (MMFA-AAE)
It is capable of learning a universal domain-invariant feature representation from multiple labeled datasets and generalizing it to unseen' camera systems.
It also surpasses many state-of-the-art supervised methods and unsupervised domain adaptation methods by a large margin.
arXiv Detail & Related papers (2020-11-25T08:03:15Z) - Dual Distribution Alignment Network for Generalizable Person
Re-Identification [174.36157174951603]
Domain generalization (DG) serves as a promising solution to handle person Re-Identification (Re-ID)
We present a Dual Distribution Alignment Network (DDAN) which handles this challenge by selectively aligning distributions of multiple source domains.
We evaluate our DDAN on a large-scale Domain Generalization Re-ID (DG Re-ID) benchmark.
arXiv Detail & Related papers (2020-07-27T00:08:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.