Anomaly Detection Based on Isolation Mechanisms: A Survey
- URL: http://arxiv.org/abs/2403.10802v1
- Date: Sat, 16 Mar 2024 04:29:21 GMT
- Title: Anomaly Detection Based on Isolation Mechanisms: A Survey
- Authors: Yang Cao, Haolong Xiang, Hang Zhang, Ye Zhu, Kai Ming Ting,
- Abstract summary: Isolation-based unsupervised anomaly detection is a novel and effective approach for identifying anomalies in data.
We review the state-of-the-art isolation-based anomaly detection methods, including their data partitioning strategies, anomaly score functions, and algorithmic details.
- Score: 13.449446806837422
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Anomaly detection is a longstanding and active research area that has many applications in domains such as finance, security, and manufacturing. However, the efficiency and performance of anomaly detection algorithms are challenged by the large-scale, high-dimensional, and heterogeneous data that are prevalent in the era of big data. Isolation-based unsupervised anomaly detection is a novel and effective approach for identifying anomalies in data. It relies on the idea that anomalies are few and different from normal instances, and thus can be easily isolated by random partitioning. Isolation-based methods have several advantages over existing methods, such as low computational complexity, low memory usage, high scalability, robustness to noise and irrelevant features, and no need for prior knowledge or heavy parameter tuning. In this survey, we review the state-of-the-art isolation-based anomaly detection methods, including their data partitioning strategies, anomaly score functions, and algorithmic details. We also discuss some extensions and applications of isolation-based methods in different scenarios, such as detecting anomalies in streaming data, time series, trajectory, and image datasets. Finally, we identify some open challenges and future directions for isolation-based anomaly detection research.
Related papers
- Unsupervised Anomaly Detection Using Diffusion Trend Analysis [48.19821513256158]
We propose a method to detect anomalies by analysis of reconstruction trend depending on the degree of degradation.
The proposed method is validated on an open dataset for industrial anomaly detection.
arXiv Detail & Related papers (2024-07-12T01:50:07Z) - Self-Supervised Time-Series Anomaly Detection Using Learnable Data Augmentation [37.72735288760648]
We propose a learnable data augmentation-based time-series anomaly detection (LATAD) technique that is trained in a self-supervised manner.
LATAD extracts discriminative features from time-series data through contrastive learning.
As per the results, LATAD exhibited comparable or improved performance to the state-of-the-art anomaly detection assessments.
arXiv Detail & Related papers (2024-06-18T04:25:56Z) - Interactive System-wise Anomaly Detection [66.3766756452743]
Anomaly detection plays a fundamental role in various applications.
It is challenging for existing methods to handle the scenarios where the instances are systems whose characteristics are not readily observed as data.
We develop an end-to-end approach which includes an encoder-decoder module that learns system embeddings.
arXiv Detail & Related papers (2023-04-21T02:20:24Z) - AGAD: Adversarial Generative Anomaly Detection [12.68966318231776]
Anomaly detection suffered from the lack of anomalies due to the diversity of abnormalities and the difficulties of obtaining large-scale anomaly data.
We propose Adversarial Generative Anomaly Detection (AGAD), a self-contrast-based anomaly detection paradigm.
Our method generates pseudo-anomaly data for both supervised and semi-supervised anomaly detection scenarios.
arXiv Detail & Related papers (2023-04-09T10:40:02Z) - Deep Learning for Time Series Anomaly Detection: A Survey [53.83593870825628]
Time series anomaly detection has applications in a wide range of research fields and applications, including manufacturing and healthcare.
The large size and complex patterns of time series have led researchers to develop specialised deep learning models for detecting anomalous patterns.
This survey focuses on providing structured and comprehensive state-of-the-art time series anomaly detection models through the use of deep learning.
arXiv Detail & Related papers (2022-11-09T22:40:22Z) - Causality-Based Multivariate Time Series Anomaly Detection [63.799474860969156]
We formulate the anomaly detection problem from a causal perspective and view anomalies as instances that do not follow the regular causal mechanism to generate the multivariate data.
We then propose a causality-based anomaly detection approach, which first learns the causal structure from data and then infers whether an instance is an anomaly relative to the local causal mechanism.
We evaluate our approach with both simulated and public datasets as well as a case study on real-world AIOps applications.
arXiv Detail & Related papers (2022-06-30T06:00:13Z) - A Survey on Anomaly Detection for Technical Systems using LSTM Networks [0.0]
Anomalies represent deviations from the intended system operation and can lead to decreased efficiency as well as partial or complete system failure.
In this article, a survey on state-of-the-art anomaly detection using deep neural and especially long short-term memory networks is conducted.
The investigated approaches are evaluated based on the application scenario, data and anomaly types as well as further metrics.
arXiv Detail & Related papers (2021-05-28T13:24:40Z) - Algorithmic Frameworks for the Detection of High Density Anomalies [0.0]
High-density anomalies are deviant cases positioned in the most normal regions of the data space.
This study introduces several non-parametric algorithmic frameworks for unsupervised detection.
arXiv Detail & Related papers (2020-10-09T17:48:02Z) - TadGAN: Time Series Anomaly Detection Using Generative Adversarial
Networks [73.01104041298031]
TadGAN is an unsupervised anomaly detection approach built on Generative Adversarial Networks (GANs)
To capture the temporal correlations of time series, we use LSTM Recurrent Neural Networks as base models for Generators and Critics.
To demonstrate the performance and generalizability of our approach, we test several anomaly scoring techniques and report the best-suited one.
arXiv Detail & Related papers (2020-09-16T15:52:04Z) - Toward Deep Supervised Anomaly Detection: Reinforcement Learning from
Partially Labeled Anomaly Data [150.9270911031327]
We consider the problem of anomaly detection with a small set of partially labeled anomaly examples and a large-scale unlabeled dataset.
Existing related methods either exclusively fit the limited anomaly examples that typically do not span the entire set of anomalies, or proceed with unsupervised learning from the unlabeled data.
We propose here instead a deep reinforcement learning-based approach that enables an end-to-end optimization of the detection of both labeled and unlabeled anomalies.
arXiv Detail & Related papers (2020-09-15T03:05:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.