論文の概要: Enhancing Out-of-Distribution Detection with Multitesting-based Layer-wise Feature Fusion
- arxiv url: http://arxiv.org/abs/2403.10803v1
- Date: Sat, 16 Mar 2024 04:35:04 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-19 21:45:00.577477
- Title: Enhancing Out-of-Distribution Detection with Multitesting-based Layer-wise Feature Fusion
- Title(参考訳): マルチテストに基づく層状特徴融合による分布検出の高速化
- Authors: Jiawei Li, Sitong Li, Shanshan Wang, Yicheng Zeng, Falong Tan, Chuanlong Xie,
- Abstract要約: アウト・オブ・ディストリビューション(Out-of-distriion)サンプルは、トレーニング分布と比較して、局所的またはグローバルな特徴の変化を示す可能性がある。
本稿では,新しいフレームワーク,Multitesting-based Layer-wise Out-of-Distribution (OOD) を提案する。
本手法は, ベースライン法と比較して, 分布外検出の性能を効果的に向上させる。
- 参考スコア(独自算出の注目度): 11.689517005768046
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deploying machine learning in open environments presents the challenge of encountering diverse test inputs that differ significantly from the training data. These out-of-distribution samples may exhibit shifts in local or global features compared to the training distribution. The machine learning (ML) community has responded with a number of methods aimed at distinguishing anomalous inputs from original training data. However, the majority of previous studies have primarily focused on the output layer or penultimate layer of pre-trained deep neural networks. In this paper, we propose a novel framework, Multitesting-based Layer-wise Out-of-Distribution (OOD) Detection (MLOD), to identify distributional shifts in test samples at different levels of features through rigorous multiple testing procedure. Our approach distinguishes itself from existing methods as it does not require modifying the structure or fine-tuning of the pre-trained classifier. Through extensive experiments, we demonstrate that our proposed framework can seamlessly integrate with any existing distance-based inspection method while efficiently utilizing feature extractors of varying depths. Our scheme effectively enhances the performance of out-of-distribution detection when compared to baseline methods. In particular, MLOD-Fisher achieves superior performance in general. When trained using KNN on CIFAR10, MLOD-Fisher significantly lowers the false positive rate (FPR) from 24.09% to 7.47% on average compared to merely utilizing the features of the last layer.
- Abstract(参考訳): オープンな環境で機械学習をデプロイすることは、トレーニングデータと大きく異なる多様なテストインプットに遭遇する課題を示す。
これらのアウト・オブ・ディストリビューションサンプルは、トレーニング分布と比較して、局所的またはグローバルな特徴の変化を示す可能性がある。
機械学習(ML)コミュニティは、元のトレーニングデータから異常な入力を区別することを目的とした、数多くの手法で対応している。
しかし、以前の研究の大部分は、主に事前訓練された深層ニューラルネットワークの出力層または最後層に焦点を当てている。
本稿では,多機能化による多機能化によるテストサンプルの分布変化を識別するために,多機能化に基づく層分割検出(Multitesting-wise Out-of-Distribution, MLOD)を提案する。
本手法は,事前学習した分類器の構造や微調整を必要としないため,既存の手法と区別する。
広範囲にわたる実験により,提案手法は様々な深度の特徴抽出器を効率よく利用しながら,既存の距離ベース検査手法とシームレスに統合できることが実証された。
本手法は, ベースライン法と比較して, 分布外検出の性能を効果的に向上させる。
特にMLOD-Fisherは一般に優れた性能を発揮する。
CIFAR10でKNNを用いて訓練すると、MLOD-Fisherは、最後の層の特徴を単に活用するのに比べて、偽陽性率(FPR)を平均24.09%から7.47%に大幅に下げる。
関連論文リスト
- DPU: Dynamic Prototype Updating for Multimodal Out-of-Distribution Detection [10.834698906236405]
機械学習モデルの堅牢性を保証するためには、アウト・オブ・ディストリビューション(OOD)検出が不可欠である。
マルチモーダルモデルの最近の進歩は、検出性能を高めるために複数のモダリティを活用する可能性を示している。
マルチモーダルOOD検出のための新しいプラグイン・アンド・プレイフレームワークであるDynamic Prototype Updating (DPU)を提案する。
論文 参考訳(メタデータ) (2024-11-12T22:43:16Z) - BoostAdapter: Improving Vision-Language Test-Time Adaptation via Regional Bootstrapping [64.8477128397529]
本稿では,テスト時間適応フレームワークを提案する。
我々は、インスタンスに依存しない履歴サンプルとインスタンスを意識したブースティングサンプルから特徴を検索するための軽量なキー値メモリを維持している。
理論的には,本手法の背後にある合理性を正当化し,アウト・オブ・ディストリビューションとクロスドメイン・データセットの両方において,その有効性を実証的に検証する。
論文 参考訳(メタデータ) (2024-10-20T15:58:43Z) - Convolutional autoencoder-based multimodal one-class classification [80.52334952912808]
1クラス分類は、単一のクラスからのデータを用いた学習のアプローチを指す。
マルチモーダルデータに適した深層学習一クラス分類法を提案する。
論文 参考訳(メタデータ) (2023-09-25T12:31:18Z) - FaFCNN: A General Disease Classification Framework Based on Feature
Fusion Neural Networks [4.097623533226476]
本稿では,機能認識型統合相関ニューラルネットワーク (FaFCNN) を提案する。
実験結果から,事前学習による強化特徴を用いた訓練により,無作為森林法よりも高い性能向上が得られた。
論文 参考訳(メタデータ) (2023-07-24T04:23:08Z) - A Functional Data Perspective and Baseline On Multi-Layer
Out-of-Distribution Detection [30.499548939422194]
複数のレイヤを探索するメソッドには、特別なアーキテクチャか、それを行うための管理対象が必要です。
この研究は、様々なレイヤとそれらの統計的依存関係を通してサンプルの軌跡を利用するネットワークの機能的なビューに基づいた、オリジナルのアプローチを採用する。
提案手法の有効性を実証的に検証し,OOD検出におけるOOD検出の有効性をコンピュータビジョンベンチマーク上での最先端のベースラインと比較した。
論文 参考訳(メタデータ) (2023-06-06T09:14:05Z) - Boosting Out-of-Distribution Detection with Multiple Pre-trained Models [41.66566916581451]
事前訓練されたモデルを用いたポストホック検出は有望な性能を示し、大規模にスケールできる。
本稿では,事前訓練されたモデルの動物園から抽出した複数の検出決定をアンサンブルすることで,検出強化手法を提案する。
CIFAR10 と ImageNet のベンチマークでは, 相対性能を 65.40% と 26.96% で大幅に改善した。
論文 参考訳(メタデータ) (2022-12-24T12:11:38Z) - Benchmarking Deep Models for Salient Object Detection [67.07247772280212]
汎用SALOD(General SALient Object Detection)ベンチマークを構築し,複数のSOD手法の総合的な比較を行った。
以上の実験では、既存の損失関数は、通常いくつかの指標に特化しているが、他の指標には劣る結果が報告されている。
我々は,深層ネットワークに画素レベルと画像レベルの両方の監視信号を統合することにより,より識別的な特徴を学習するためのエッジ・アウェア・ロス(EA)を提案する。
論文 参考訳(メタデータ) (2022-02-07T03:43:16Z) - Transformers Can Do Bayesian Inference [56.99390658880008]
我々はPFN(Presideed Data Fitted Networks)を提案する。
PFNは、大規模機械学習技術におけるインコンテキスト学習を活用して、大規模な後部集合を近似する。
我々は、PFNがガウス過程をほぼ完璧に模倣し、難解問題に対する効率的なベイズ推定を可能にすることを示した。
論文 参考訳(メタデータ) (2021-12-20T13:07:39Z) - Squeezing Backbone Feature Distributions to the Max for Efficient
Few-Shot Learning [3.1153758106426603]
ラベル付きサンプルの少ない使用によって生じる不確実性のため、ほとんどショット分類が難しい問題である。
本稿では,特徴ベクトルをガウス分布に近づけるように処理するトランスファーベース手法を提案する。
また,学習中に未学習のサンプルが利用可能となる多段階的数ショット学習では,達成された性能をさらに向上させる最適なトランスポートインスピレーションアルゴリズムも導入する。
論文 参考訳(メタデータ) (2021-10-18T16:29:17Z) - Distribution Mismatch Correction for Improved Robustness in Deep Neural
Networks [86.42889611784855]
正規化法は ノイズや入力の腐敗に関して 脆弱性を増大させる
本稿では,各層の活性化分布に適応する非教師なし非パラメトリック分布補正法を提案する。
実験により,提案手法は画像劣化の激しい影響を効果的に低減することを示した。
論文 参考訳(メタデータ) (2021-10-05T11:36:25Z) - Multi-Scale Positive Sample Refinement for Few-Shot Object Detection [61.60255654558682]
Few-shot Object Detection (FSOD) は、ディテクターがトレーニングインスタンスをほとんど持たない未確認のクラスに適応するのに役立つ。
FSODにおけるオブジェクトスケールを拡張化するためのMPSR(Multi-scale Positive Sample Refinement)アプローチを提案する。
MPSRは、オブジェクトピラミッドとして多スケールの正のサンプルを生成し、様々なスケールで予測を洗練させる。
論文 参考訳(メタデータ) (2020-07-18T09:48:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。