論文の概要: Neural-Kernel Conditional Mean Embeddings
- arxiv url: http://arxiv.org/abs/2403.10859v1
- Date: Sat, 16 Mar 2024 08:51:02 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-19 21:25:31.277331
- Title: Neural-Kernel Conditional Mean Embeddings
- Title(参考訳): ニューラルカーネル条件付き平均埋め込み
- Authors: Eiki Shimizu, Kenji Fukumizu, Dino Sejdinovic,
- Abstract要約: カーネル条件付き平均埋め込み(CME)は条件分布を表す強力なフレームワークを提供するが、スケーラビリティと課題に直面することが多い。
本稿では,これらの課題に対処するために,ディープラーニングとCMEの強みを効果的に組み合わせた新しい手法を提案する。
条件付き密度推定タスクでは、NN-CMEハイブリッドは競合性能を達成し、しばしば既存のディープラーニング手法を上回ります。
- 参考スコア(独自算出の注目度): 26.862984140099837
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Kernel conditional mean embeddings (CMEs) offer a powerful framework for representing conditional distribution, but they often face scalability and expressiveness challenges. In this work, we propose a new method that effectively combines the strengths of deep learning with CMEs in order to address these challenges. Specifically, our approach leverages the end-to-end neural network (NN) optimization framework using a kernel-based objective. This design circumvents the computationally expensive Gram matrix inversion required by current CME methods. To further enhance performance, we provide efficient strategies to optimize the remaining kernel hyperparameters. In conditional density estimation tasks, our NN-CME hybrid achieves competitive performance and often surpasses existing deep learning-based methods. Lastly, we showcase its remarkable versatility by seamlessly integrating it into reinforcement learning (RL) contexts. Building on Q-learning, our approach naturally leads to a new variant of distributional RL methods, which demonstrates consistent effectiveness across different environments.
- Abstract(参考訳): カーネル条件付き平均埋め込み(CME)は、条件分布を表現するための強力なフレームワークを提供するが、スケーラビリティと表現性の課題に直面することが多い。
本研究では,これらの課題に対処するために,ディープラーニングとCMEの強みを効果的に組み合わせた新しい手法を提案する。
具体的には、カーネルベースの目的を用いて、エンドツーエンドニューラルネットワーク(NN)最適化フレームワークを活用する。
この設計は、現在のCME法で必要とされる計算コストの高いグラム行列逆転を回避している。
性能をさらに向上するために、残りのカーネルハイパーパラメーターを最適化するための効率的な戦略を提供する。
条件付き密度推定タスクでは、NN-CMEハイブリッドは競合性能を達成し、しばしば既存のディープラーニング手法を上回ります。
最後に、強化学習(RL)コンテキストにシームレスに統合することで、その優れた汎用性を示す。
提案手法は,Q-ラーニングに基づいて,分散RL手法の新たな変種を自然に導き,異なる環境における一貫した有効性を示す。
関連論文リスト
- Blind Super-Resolution via Meta-learning and Markov Chain Monte Carlo Simulation [46.5310645609264]
本稿では,メタラーニングとマルコフ・チェイン・モンテカルロに基づくSISRアプローチを提案する。
軽量ネットワークがカーネルジェネレータとして採用され、ランダムガウス分布のMCMCシミュレーションから学習することで最適化される。
カーネルジェネレータと画像復元器を最適化するために,メタラーニングに基づく交互最適化手法を提案する。
論文 参考訳(メタデータ) (2024-06-13T07:50:15Z) - Center-Sensitive Kernel Optimization for Efficient On-Device Incremental Learning [88.78080749909665]
現在のオンデバイストレーニング手法は、破滅的な忘れを考慮せずに、効率的なトレーニングにのみ焦点をあてている。
本稿では,単純だが効果的なエッジフレンドリーなインクリメンタル学習フレームワークを提案する。
本手法は,メモリの削減と近似計算により,平均精度38.08%の高速化を実現する。
論文 参考訳(メタデータ) (2024-06-13T05:49:29Z) - Self Expanding Convolutional Neural Networks [1.4330085996657045]
本稿では,学習中の畳み込みニューラルネットワーク(CNN)を動的に拡張する新しい手法を提案する。
我々は、単一のモデルを動的に拡張する戦略を採用し、様々な複雑さのレベルでチェックポイントの抽出を容易にする。
論文 参考訳(メタデータ) (2024-01-11T06:22:40Z) - Guaranteed Conservation of Momentum for Learning Particle-based Fluid
Dynamics [96.9177297872723]
本稿では,学習物理シミュレーションにおける線形運動量を保証する新しい手法を提案する。
我々は、強い制約で運動量の保存を強制し、反対称的な連続的な畳み込み層を通して実現する。
提案手法により,学習シミュレータの物理的精度を大幅に向上させることができる。
論文 参考訳(メタデータ) (2022-10-12T09:12:59Z) - Efficient Model-Based Multi-Agent Mean-Field Reinforcement Learning [89.31889875864599]
マルチエージェントシステムにおける学習に有効なモデルベース強化学習アルゴリズムを提案する。
我々の理論的な貢献は、MFCのモデルベース強化学習における最初の一般的な後悔の限界である。
コア最適化問題の実用的なパラメトリゼーションを提供する。
論文 参考訳(メタデータ) (2021-07-08T18:01:02Z) - Learning to Continuously Optimize Wireless Resource in a Dynamic
Environment: A Bilevel Optimization Perspective [52.497514255040514]
この研究は、データ駆動メソッドが動的環境でリソース割り当て戦略を継続的に学び、最適化することを可能にする新しいアプローチを開発しています。
学習モデルが新たなエピソードに段階的に適応できるように、連続学習の概念を無線システム設計に組み込むことを提案する。
我々の設計は、異なるデータサンプルにまたがる公平性を保証する、新しい二段階最適化定式化に基づいている。
論文 参考訳(メタデータ) (2021-05-03T07:23:39Z) - Meta-Learning with Neural Tangent Kernels [58.06951624702086]
メタモデルのニューラルタンジェントカーネル(NTK)によって誘導される再生カーネルヒルベルト空間(RKHS)における最初のメタラーニングパラダイムを提案する。
このパラダイムでは,MAMLフレームワークのように,最適な反復内ループ適応を必要としない2つのメタ学習アルゴリズムを導入する。
本研究の目的は,1) 適応をRKHSの高速適応正則化器に置き換えること,2) NTK理論に基づいて解析的に適応を解くことである。
論文 参考訳(メタデータ) (2021-02-07T20:53:23Z) - Learning to Continuously Optimize Wireless Resource In Episodically
Dynamic Environment [55.91291559442884]
この研究は、データ駆動型手法が動的環境で継続的に学習し、最適化できる方法論を開発する。
本稿では,無線システム学習のモデリングプロセスに連続学習の概念を構築することを提案する。
我々の設計は、異なるデータサンプル間で「一定の公正性を保証する」新しいmin-maxの定式化に基づいている。
論文 参考訳(メタデータ) (2020-11-16T08:24:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。