Urban Sound Propagation: a Benchmark for 1-Step Generative Modeling of Complex Physical Systems
- URL: http://arxiv.org/abs/2403.10904v2
- Date: Tue, 19 Mar 2024 11:37:28 GMT
- Title: Urban Sound Propagation: a Benchmark for 1-Step Generative Modeling of Complex Physical Systems
- Authors: Martin Spitznagel, Janis Keuper,
- Abstract summary: We present a benchmark for the evaluation of 1-step inference models in terms of speed and physical correctness.
Our benchmark is based on the physically complex and practically relevant task of modeling the 2d propagation of waves from a sound source in an urban environment.
We provide a dataset with 100k samples, where each sample consists of pairs of real 2d building maps drawn from OpenStreetmap, a parameterized sound source, and a simulated ground truth sound propagation for the given scene.
- Score: 8.04779839951237
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Data-driven modeling of complex physical systems is receiving a growing amount of attention in the simulation and machine learning communities. Since most physical simulations are based on compute-intensive, iterative implementations of differential equation systems, a (partial) replacement with learned, 1-step inference models has the potential for significant speedups in a wide range of application areas. In this context, we present a novel benchmark for the evaluation of 1-step generative learning models in terms of speed and physical correctness. Our Urban Sound Propagation benchmark is based on the physically complex and practically relevant, yet intuitively easy to grasp task of modeling the 2d propagation of waves from a sound source in an urban environment. We provide a dataset with 100k samples, where each sample consists of pairs of real 2d building maps drawn from OpenStreetmap, a parameterized sound source, and a simulated ground truth sound propagation for the given scene. The dataset provides four different simulation tasks with increasing complexity regarding reflection, diffraction and source variance. A first baseline evaluation of common generative U-Net, GAN and Diffusion models shows, that while these models are very well capable of modeling sound propagations in simple cases, the approximation of sub-systems represented by higher order equations systematically fails. Information about the dataset, download instructions and source codes are provided on our website: https://www.urban-sound-data.org.
Related papers
- Differentiable Modal Synthesis for Physical Modeling of Planar String Sound and Motion Simulation [17.03776191787701]
We introduce a novel model for simulating motion properties of nonlinear strings.
We integrate modal synthesis and spectral modeling within physical network framework.
Empirical evaluations demonstrate that the architecture achieves superior accuracy in string motion simulation.
arXiv Detail & Related papers (2024-07-07T23:36:51Z) - Deep Generative Data Assimilation in Multimodal Setting [0.1052166918701117]
In this work, we propose SLAMS: Score-based Latent Assimilation in Multimodal Setting.
We assimilate in-situ weather station data and ex-situ satellite imagery to calibrate the vertical temperature profiles, globally.
Our work is the first to apply deep generative framework for multimodal data assimilation using real-world datasets.
arXiv Detail & Related papers (2024-04-10T00:25:09Z) - Real Acoustic Fields: An Audio-Visual Room Acoustics Dataset and Benchmark [65.79402756995084]
Real Acoustic Fields (RAF) is a new dataset that captures real acoustic room data from multiple modalities.
RAF is the first dataset to provide densely captured room acoustic data.
arXiv Detail & Related papers (2024-03-27T17:59:56Z) - Synthetic location trajectory generation using categorical diffusion
models [50.809683239937584]
Diffusion models (DPMs) have rapidly evolved to be one of the predominant generative models for the simulation of synthetic data.
We propose using DPMs for the generation of synthetic individual location trajectories (ILTs) which are sequences of variables representing physical locations visited by individuals.
arXiv Detail & Related papers (2024-02-19T15:57:39Z) - Foundational Inference Models for Dynamical Systems [5.549794481031468]
We offer a fresh perspective on the classical problem of imputing missing time series data, whose underlying dynamics are assumed to be determined by ODEs.
We propose a novel supervised learning framework for zero-shot time series imputation, through parametric functions satisfying some (hidden) ODEs.
We empirically demonstrate that one and the same (pretrained) recognition model can perform zero-shot imputation across 63 distinct time series with missing values.
arXiv Detail & Related papers (2024-02-12T11:48:54Z) - Learning to Predict Structural Vibrations [2.4746345679821617]
In mechanical structures like airplanes, cars and houses, noise is generated and transmitted through vibrations.
To take measures to reduce this noise, vibrations need to be simulated with expensive numerical computations.
We present a benchmark on the task of predicting the vibration of harmonically excited plates.
arXiv Detail & Related papers (2023-10-09T07:26:35Z) - Boosting Fast and High-Quality Speech Synthesis with Linear Diffusion [85.54515118077825]
This paper proposes a linear diffusion model (LinDiff) based on an ordinary differential equation to simultaneously reach fast inference and high sample quality.
To reduce computational complexity, LinDiff employs a patch-based processing approach that partitions the input signal into small patches.
Our model can synthesize speech of a quality comparable to that of autoregressive models with faster synthesis speed.
arXiv Detail & Related papers (2023-06-09T07:02:43Z) - Learning Free-Surface Flow with Physics-Informed Neural Networks [0.0]
We build on the notion of physics-informed neural networks (PINNs) and employ them in the area of shallow-water equation (SWE) models.
These models play an important role in modeling and simulating free-surface flow scenarios such as in flood-wave propagation or tsunami waves.
arXiv Detail & Related papers (2021-11-17T18:45:55Z) - Bridging the Gap Between Clean Data Training and Real-World Inference
for Spoken Language Understanding [76.89426311082927]
Existing models are trained on clean data, which causes a textitgap between clean data training and real-world inference.
We propose a method from the perspective of domain adaptation, by which both high- and low-quality samples are embedding into similar vector space.
Experiments on the widely-used dataset, Snips, and large scale in-house dataset (10 million training examples) demonstrate that this method not only outperforms the baseline models on real-world (noisy) corpus but also enhances the robustness, that is, it produces high-quality results under a noisy environment.
arXiv Detail & Related papers (2021-04-13T17:54:33Z) - A Generative Learning Approach for Spatio-temporal Modeling in Connected
Vehicular Network [55.852401381113786]
This paper proposes LaMI (Latency Model Inpainting), a novel framework to generate a comprehensive-temporal quality framework for wireless access latency of connected vehicles.
LaMI adopts the idea from image inpainting and synthesizing and can reconstruct the missing latency samples by a two-step procedure.
In particular, it first discovers the spatial correlation between samples collected in various regions using a patching-based approach and then feeds the original and highly correlated samples into a Varienational Autocoder (VAE)
arXiv Detail & Related papers (2020-03-16T03:43:59Z) - Learning to Simulate Complex Physics with Graph Networks [68.43901833812448]
We present a machine learning framework and model implementation that can learn to simulate a wide variety of challenging physical domains.
Our framework---which we term "Graph Network-based Simulators" (GNS)--represents the state of a physical system with particles, expressed as nodes in a graph, and computes dynamics via learned message-passing.
Our results show that our model can generalize from single-timestep predictions with thousands of particles during training, to different initial conditions, thousands of timesteps, and at least an order of magnitude more particles at test time.
arXiv Detail & Related papers (2020-02-21T16:44:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.