Differentiable Modal Synthesis for Physical Modeling of Planar String Sound and Motion Simulation
- URL: http://arxiv.org/abs/2407.05516v2
- Date: Wed, 30 Oct 2024 19:54:09 GMT
- Title: Differentiable Modal Synthesis for Physical Modeling of Planar String Sound and Motion Simulation
- Authors: Jin Woo Lee, Jaehyun Park, Min Jun Choi, Kyogu Lee,
- Abstract summary: We introduce a novel model for simulating motion properties of nonlinear strings.
We integrate modal synthesis and spectral modeling within physical network framework.
Empirical evaluations demonstrate that the architecture achieves superior accuracy in string motion simulation.
- Score: 17.03776191787701
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: While significant advancements have been made in music generation and differentiable sound synthesis within machine learning and computer audition, the simulation of instrument vibration guided by physical laws has been underexplored. To address this gap, we introduce a novel model for simulating the spatio-temporal motion of nonlinear strings, integrating modal synthesis and spectral modeling within a neural network framework. Our model leverages physical properties and fundamental frequencies as inputs, outputting string states across time and space that solve the partial differential equation characterizing the nonlinear string. Empirical evaluations demonstrate that the proposed architecture achieves superior accuracy in string motion simulation compared to existing baseline architectures. The code and demo are available online.
Related papers
- A Realistic Simulation Framework for Analog/Digital Neuromorphic Architectures [73.65190161312555]
ARCANA is a spiking neural network simulator designed to account for the properties of mixed-signal neuromorphic circuits.
We show how the results obtained provide a reliable estimate of the behavior of the spiking neural network trained in software.
arXiv Detail & Related papers (2024-09-23T11:16:46Z) - Comparative Study of State-based Neural Networks for Virtual Analog Audio Effects Modeling [0.0]
This article explores the application of machine learning advancements for virtual analog modeling.
We compare State-Space models and Linear Recurrent Units against the more common Long Short-Term Memory networks.
arXiv Detail & Related papers (2024-05-07T08:47:40Z) - Urban Sound Propagation: a Benchmark for 1-Step Generative Modeling of Complex Physical Systems [8.04779839951237]
We present a benchmark for the evaluation of 1-step inference models in terms of speed and physical correctness.
Our benchmark is based on the physically complex and practically relevant task of modeling the 2d propagation of waves from a sound source in an urban environment.
We provide a dataset with 100k samples, where each sample consists of pairs of real 2d building maps drawn from OpenStreetmap, a parameterized sound source, and a simulated ground truth sound propagation for the given scene.
arXiv Detail & Related papers (2024-03-16T11:38:58Z) - Equivariant Graph Neural Operator for Modeling 3D Dynamics [148.98826858078556]
We propose Equivariant Graph Neural Operator (EGNO) to directly models dynamics as trajectories instead of just next-step prediction.
EGNO explicitly learns the temporal evolution of 3D dynamics where we formulate the dynamics as a function over time and learn neural operators to approximate it.
Comprehensive experiments in multiple domains, including particle simulations, human motion capture, and molecular dynamics, demonstrate the significantly superior performance of EGNO against existing methods.
arXiv Detail & Related papers (2024-01-19T21:50:32Z) - DiffuseBot: Breeding Soft Robots With Physics-Augmented Generative
Diffusion Models [102.13968267347553]
We present DiffuseBot, a physics-augmented diffusion model that generates soft robot morphologies capable of excelling in a wide spectrum of tasks.
We showcase a range of simulated and fabricated robots along with their capabilities.
arXiv Detail & Related papers (2023-11-28T18:58:48Z) - Towards Complex Dynamic Physics System Simulation with Graph Neural ODEs [75.7104463046767]
This paper proposes a novel learning based simulation model that characterizes the varying spatial and temporal dependencies in particle systems.
We empirically evaluate GNSTODE's simulation performance on two real-world particle systems, Gravity and Coulomb.
arXiv Detail & Related papers (2023-05-21T03:51:03Z) - Capturing dynamical correlations using implicit neural representations [85.66456606776552]
We develop an artificial intelligence framework which combines a neural network trained to mimic simulated data from a model Hamiltonian with automatic differentiation to recover unknown parameters from experimental data.
In doing so, we illustrate the ability to build and train a differentiable model only once, which then can be applied in real-time to multi-dimensional scattering data.
arXiv Detail & Related papers (2023-04-08T07:55:36Z) - Rigid-Body Sound Synthesis with Differentiable Modal Resonators [6.680437329908454]
We present a novel end-to-end framework for training a deep neural network to generate modal resonators for a given 2D shape and material.
We demonstrate our method on a dataset of synthetic objects, but train our model using an audio-domain objective.
arXiv Detail & Related papers (2022-10-27T10:34:38Z) - Inferring Articulated Rigid Body Dynamics from RGBD Video [18.154013621342266]
We introduce a pipeline that combines inverse rendering with differentiable simulation to create digital twins of real-world articulated mechanisms.
Our approach accurately reconstructs the kinematic tree of an articulated mechanism being manipulated by a robot.
arXiv Detail & Related papers (2022-03-20T08:19:02Z) - Learning to Simulate Complex Physics with Graph Networks [68.43901833812448]
We present a machine learning framework and model implementation that can learn to simulate a wide variety of challenging physical domains.
Our framework---which we term "Graph Network-based Simulators" (GNS)--represents the state of a physical system with particles, expressed as nodes in a graph, and computes dynamics via learned message-passing.
Our results show that our model can generalize from single-timestep predictions with thousands of particles during training, to different initial conditions, thousands of timesteps, and at least an order of magnitude more particles at test time.
arXiv Detail & Related papers (2020-02-21T16:44:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.