Exploiting Topological Priors for Boosting Point Cloud Generation
- URL: http://arxiv.org/abs/2403.10962v2
- Date: Fri, 26 Apr 2024 05:48:26 GMT
- Title: Exploiting Topological Priors for Boosting Point Cloud Generation
- Authors: Baiyuan Chen,
- Abstract summary: This paper presents an innovative enhancement to the Sphere as Prior Generative Adversarial Network (SP-GAN) model, a state-of-the-art GAN designed for point cloud generation.
A novel method is introduced for point cloud generation that elevates the structural integrity and overall quality of the generated point clouds by incorporating topological priors into the training process of the generator.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper presents an innovative enhancement to the Sphere as Prior Generative Adversarial Network (SP-GAN) model, a state-of-the-art GAN designed for point cloud generation. A novel method is introduced for point cloud generation that elevates the structural integrity and overall quality of the generated point clouds by incorporating topological priors into the training process of the generator. Specifically, this work utilizes the K-means algorithm to segment a point cloud from the repository into clusters and extract centroids, which are then used as priors in the generation process of the SP-GAN. Furthermore, the discriminator component of the SP-GAN utilizes the identical point cloud that contributed the centroids, ensuring a coherent and consistent learning environment. This strategic use of centroids as intuitive guides not only boosts the efficiency of global feature learning but also substantially improves the structural coherence and fidelity of the generated point clouds. By applying the K-means algorithm to generate centroids as the prior, the work intuitively and experimentally demonstrates that such a prior enhances the quality of generated point clouds.
Related papers
- PCE-GAN: A Generative Adversarial Network for Point Cloud Attribute Quality Enhancement based on Optimal Transport [56.56430888985025]
We propose a generative adversarial network for point cloud quality enhancement (PCE-GAN)
The generator consists of a local feature extraction (LFE) unit, a global spatial correlation (GSC) unit and a feature squeeze unit.
The discriminator computes the deviation between the probability distributions of the enhanced point cloud and the original point cloud, guiding the generator to achieve high quality reconstruction.
arXiv Detail & Related papers (2025-02-26T07:34:33Z) - Point Cloud Synthesis Using Inner Product Transforms [13.608942872770855]
We develop a novel method that encodes geometrical-topological characteristics of point clouds using inner products.
Our encoding exhibits high quality in typical tasks like reconstruction, generation, and inference, with inference times orders of magnitude faster than existing methods.
arXiv Detail & Related papers (2024-10-09T17:19:22Z) - Point Cloud Compression with Implicit Neural Representations: A Unified Framework [54.119415852585306]
We present a pioneering point cloud compression framework capable of handling both geometry and attribute components.
Our framework utilizes two coordinate-based neural networks to implicitly represent a voxelized point cloud.
Our method exhibits high universality when contrasted with existing learning-based techniques.
arXiv Detail & Related papers (2024-05-19T09:19:40Z) - REPS: Reconstruction-based Point Cloud Sampling [37.10538035973968]
Deep downsampling methods can be classified into two main types: generative-based and score-based.
In this paper, we propose REPS, a reconstruction-based scoring strategy.
Our method outperforms previous approaches in preserving the structural features of the sampled point clouds.
arXiv Detail & Related papers (2024-03-08T04:48:56Z) - Mitigating Prior Shape Bias in Point Clouds via Differentiable Center Learning [19.986150101882217]
We introduce a novel solution called the Differentiable Center Sampling Network (DCS-Net)
It tackles the information leakage problem by incorporating both global feature reconstruction and local feature reconstruction as non-trivial proxy tasks.
Experimental results demonstrate that our method enhances the expressive capacity of existing point cloud models.
arXiv Detail & Related papers (2024-02-03T08:58:23Z) - Point Cloud Pre-training with Diffusion Models [62.12279263217138]
We propose a novel pre-training method called Point cloud Diffusion pre-training (PointDif)
PointDif achieves substantial improvement across various real-world datasets for diverse downstream tasks such as classification, segmentation and detection.
arXiv Detail & Related papers (2023-11-25T08:10:05Z) - Patch-Wise Point Cloud Generation: A Divide-and-Conquer Approach [83.05340155068721]
We devise a new 3d point cloud generation framework using a divide-and-conquer approach.
All patch generators are based on learnable priors, which aim to capture the information of geometry primitives.
Experimental results on a variety of object categories from the most popular point cloud dataset, ShapeNet, show the effectiveness of the proposed patch-wise point cloud generation.
arXiv Detail & Related papers (2023-07-22T11:10:39Z) - StarNet: Style-Aware 3D Point Cloud Generation [82.30389817015877]
StarNet is able to reconstruct and generate high-fidelity and even 3D point clouds using a mapping network.
Our framework achieves comparable state-of-the-art performance on various metrics in the point cloud reconstruction and generation tasks.
arXiv Detail & Related papers (2023-03-28T08:21:44Z) - Controllable Mesh Generation Through Sparse Latent Point Diffusion
Models [105.83595545314334]
We design a novel sparse latent point diffusion model for mesh generation.
Our key insight is to regard point clouds as an intermediate representation of meshes, and model the distribution of point clouds instead.
Our proposed sparse latent point diffusion model achieves superior performance in terms of generation quality and controllability.
arXiv Detail & Related papers (2023-03-14T14:25:29Z) - Upsampling Autoencoder for Self-Supervised Point Cloud Learning [11.19408173558718]
We propose a self-supervised pretraining model for point cloud learning without human annotations.
Upsampling operation encourages the network to capture both high-level semantic information and low-level geometric information of the point cloud.
We find that our UAE outperforms previous state-of-the-art methods in shape classification, part segmentation and point cloud upsampling tasks.
arXiv Detail & Related papers (2022-03-21T07:20:37Z) - PointAttN: You Only Need Attention for Point Cloud Completion [89.88766317412052]
Point cloud completion refers to completing 3D shapes from partial 3D point clouds.
We propose a novel neural network for processing point cloud in a per-point manner to eliminate kNNs.
The proposed framework, namely PointAttN, is simple, neat and effective, which can precisely capture the structural information of 3D shapes.
arXiv Detail & Related papers (2022-03-16T09:20:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.