Point Cloud Synthesis Using Inner Product Transforms
- URL: http://arxiv.org/abs/2410.18987v2
- Date: Tue, 11 Feb 2025 09:03:09 GMT
- Title: Point Cloud Synthesis Using Inner Product Transforms
- Authors: Ernst Röell, Bastian Rieck,
- Abstract summary: We develop a novel method that encodes geometrical-topological characteristics of point clouds using inner products.
Our encoding exhibits high quality in typical tasks like reconstruction, generation, and inference, with inference times orders of magnitude faster than existing methods.
- Score: 13.608942872770855
- License:
- Abstract: Point-cloud synthesis, i.e. the generation of novel point clouds from an input distribution, remains a challenging task, for which numerous complex machine-learning models have been devised. We develop a novel method that encodes geometrical-topological characteristics of point clouds using inner products, leading to a highly-efficient point cloud representation with provable expressivity properties. Integrated into deep learning models, our encoding exhibits high quality in typical tasks like reconstruction, generation, and interpolation, with inference times orders of magnitude faster than existing methods.
Related papers
- Bridging Domain Gap of Point Cloud Representations via Self-Supervised Geometric Augmentation [15.881442863961531]
We introduce a novel scheme for induced geometric invariance of point cloud representations across domains.
On one hand, a novel pretext task of predicting translation of distances of augmented samples is proposed to alleviate centroid shift of point clouds.
On the other hand, we pioneer an integration of the relational self-supervised learning on geometrically-augmented point clouds.
arXiv Detail & Related papers (2024-09-11T02:39:19Z) - INPC: Implicit Neural Point Clouds for Radiance Field Rendering [5.64500060725726]
We introduce a new approach for reconstruction and novel-view synthesis of real-world scenes.
We propose a hybrid scene representation, which implicitly encodes a point cloud in a continuous octree-based probability field and a multi-resolution hash grid.
Our method achieves fast inference at interactive frame rates, and can extract explicit point clouds to further enhance performance.
arXiv Detail & Related papers (2024-03-25T15:26:32Z) - Patch-Wise Point Cloud Generation: A Divide-and-Conquer Approach [83.05340155068721]
We devise a new 3d point cloud generation framework using a divide-and-conquer approach.
All patch generators are based on learnable priors, which aim to capture the information of geometry primitives.
Experimental results on a variety of object categories from the most popular point cloud dataset, ShapeNet, show the effectiveness of the proposed patch-wise point cloud generation.
arXiv Detail & Related papers (2023-07-22T11:10:39Z) - StarNet: Style-Aware 3D Point Cloud Generation [82.30389817015877]
StarNet is able to reconstruct and generate high-fidelity and even 3D point clouds using a mapping network.
Our framework achieves comparable state-of-the-art performance on various metrics in the point cloud reconstruction and generation tasks.
arXiv Detail & Related papers (2023-03-28T08:21:44Z) - Controllable Mesh Generation Through Sparse Latent Point Diffusion
Models [105.83595545314334]
We design a novel sparse latent point diffusion model for mesh generation.
Our key insight is to regard point clouds as an intermediate representation of meshes, and model the distribution of point clouds instead.
Our proposed sparse latent point diffusion model achieves superior performance in terms of generation quality and controllability.
arXiv Detail & Related papers (2023-03-14T14:25:29Z) - Autoregressive 3D Shape Generation via Canonical Mapping [92.91282602339398]
transformers have shown remarkable performances in a variety of generative tasks such as image, audio, and text generation.
In this paper, we aim to further exploit the power of transformers and employ them for the task of 3D point cloud generation.
Our model can be easily extended to multi-modal shape completion as an application for conditional shape generation.
arXiv Detail & Related papers (2022-04-05T03:12:29Z) - Differentiable Convolution Search for Point Cloud Processing [114.66038862207118]
We propose a novel differential convolution search paradigm on point clouds.
It can work in a purely data-driven manner and thus is capable of auto-creating a group of suitable convolutions for geometric shape modeling.
We also propose a joint optimization framework for simultaneous search of internal convolution and external architecture, and introduce epsilon-greedy algorithm to alleviate the effect of discretization error.
arXiv Detail & Related papers (2021-08-29T14:42:03Z) - PoinTr: Diverse Point Cloud Completion with Geometry-Aware Transformers [81.71904691925428]
We present a new method that reformulates point cloud completion as a set-to-set translation problem.
We also design a new model, called PoinTr, that adopts a transformer encoder-decoder architecture for point cloud completion.
Our method outperforms state-of-the-art methods by a large margin on both the new benchmarks and the existing ones.
arXiv Detail & Related papers (2021-08-19T17:58:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.