論文の概要: Advancing multivariate time series similarity assessment: an integrated computational approach
- arxiv url: http://arxiv.org/abs/2403.11044v1
- Date: Sat, 16 Mar 2024 23:52:25 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-19 20:27:00.469471
- Title: Advancing multivariate time series similarity assessment: an integrated computational approach
- Title(参考訳): 多変量時系列類似度評価の高度化:統合計算アプローチ
- Authors: Franck Tonle, Henri Tonnang, Milliam Ndadji, Maurice Tchendji, Armand Nzeukou, Kennedy Senagi, Saliou Niassy,
- Abstract要約: 多変量時系列データの類似性を評価するための統合計算手法を提案する。
MTASAは時系列アライメントを最適化するために設計され、マルチプロセッシングエンジンによって補完される。
MTASAは既存の最先端統合フレームワークに比べて約1.5倍の精度と2倍の速度を実現している。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Data mining, particularly the analysis of multivariate time series data, plays a crucial role in extracting insights from complex systems and supporting informed decision-making across diverse domains. However, assessing the similarity of multivariate time series data presents several challenges, including dealing with large datasets, addressing temporal misalignments, and the need for efficient and comprehensive analytical frameworks. To address all these challenges, we propose a novel integrated computational approach known as Multivariate Time series Alignment and Similarity Assessment (MTASA). MTASA is built upon a hybrid methodology designed to optimize time series alignment, complemented by a multiprocessing engine that enhances the utilization of computational resources. This integrated approach comprises four key components, each addressing essential aspects of time series similarity assessment, thereby offering a comprehensive framework for analysis. MTASA is implemented as an open-source Python library with a user-friendly interface, making it accessible to researchers and practitioners. To evaluate the effectiveness of MTASA, we conducted an empirical study focused on assessing agroecosystem similarity using real-world environmental data. The results from this study highlight MTASA's superiority, achieving approximately 1.5 times greater accuracy and twice the speed compared to existing state-of-the-art integrated frameworks for multivariate time series similarity assessment. It is hoped that MTASA will significantly enhance the efficiency and accessibility of multivariate time series analysis, benefitting researchers and practitioners across various domains. Its capabilities in handling large datasets, addressing temporal misalignments, and delivering accurate results make MTASA a valuable tool for deriving insights and aiding decision-making processes in complex systems.
- Abstract(参考訳): データマイニング、特に多変量時系列データの解析は、複雑なシステムから洞察を抽出し、様々な領域にわたる情報的意思決定を支援する上で重要な役割を担っている。
しかし、多変量時系列データの類似性を評価することは、大規模なデータセットの処理、時間的ミスアライメントへの対処、効率的で包括的な分析フレームワークの必要性など、いくつかの課題を提示している。
これらの課題に対処するため, MTASA (Multivariate Time series Alignment and similarity Assessment) と呼ばれる新しい計算手法を提案する。
MTASAは時系列アライメントを最適化するために設計されたハイブリッドな手法に基づいており、計算資源の利用性を高めるマルチプロセッシングエンジンによって補完される。
この統合されたアプローチは、4つの重要なコンポーネントから構成され、それぞれが時系列の類似性評価の本質的な側面に対処し、分析のための包括的なフレームワークを提供する。
MTASAは、ユーザフレンドリーなインターフェースを備えたオープンソースのPythonライブラリとして実装されており、研究者や実践者が利用できる。
MTASAの有効性を評価するため,実環境データを用いた農業生態系の類似性評価を目的とした実証的研究を行った。
本研究の結果はMTASAの優位性を強調し,従来の多変量時系列類似性評価フレームワークと比較して約1.5倍の精度と2倍の速度を実現した。
MTASAは多変量時系列解析の効率とアクセシビリティを大幅に向上させ,様々な領域の研究者や実践者に利益をもたらすことが期待されている。
大規模なデータセットの処理、時間的ミスアライメントへの対処、正確な結果の提供といった能力により、MTASAは複雑なシステムにおける洞察を導き、意思決定プロセスを支援する貴重なツールになります。
関連論文リスト
- POGEMA: A Benchmark Platform for Cooperative Multi-Agent Navigation [76.67608003501479]
主評価指標の基礎に基づいて計算された領域関連メトリクスの範囲を定義する評価プロトコルを導入・指定する。
このような比較の結果は、様々な最先端のMARL、検索ベース、ハイブリッド手法を含むものである。
論文 参考訳(メタデータ) (2024-07-20T16:37:21Z) - SMORE: Similarity-based Hyperdimensional Domain Adaptation for
Multi-Sensor Time Series Classification [17.052624039805856]
マルチセンサ時系列分類のための新しい資源効率ドメイン適応(DA)アルゴリズムであるSMOREを提案する。
SMOREは、最先端(SOTA)のDNNベースのDAアルゴリズムよりも平均1.98%高い精度で18.81倍高速トレーニングと4.63倍高速推論を実現している。
論文 参考訳(メタデータ) (2024-02-20T18:48:49Z) - A Multi-Scale Decomposition MLP-Mixer for Time Series Analysis [14.40202378972828]
そこで我々は,MSD-Mixerを提案する。MSD-Mixerは,各レイヤの入力時系列を明示的に分解し,表現することを学ぶマルチスケール分解ミクサーである。
我々は,MSD-Mixerが他の最先端のアルゴリズムよりも効率よく優れていることを示す。
論文 参考訳(メタデータ) (2023-10-18T13:39:07Z) - Compatible Transformer for Irregularly Sampled Multivariate Time Series [75.79309862085303]
本研究では,各サンプルに対して総合的な時間的相互作用特徴学習を実現するためのトランスフォーマーベースのエンコーダを提案する。
実世界の3つのデータセットについて広範な実験を行い、提案したCoFormerが既存の手法を大幅に上回っていることを検証した。
論文 参考訳(メタデータ) (2023-10-17T06:29:09Z) - Kernel-based Joint Independence Tests for Multivariate Stationary and
Non-stationary Time Series [0.6749750044497732]
多変量時系列における共同独立のカーネルベース統計テストを導入する。
提案手法は, 合成例において, 高次依存関係を頑健に発見する方法を示す。
我々の手法はデータの高次相互作用を明らかにするのに役立つ。
論文 参考訳(メタデータ) (2023-05-15T10:38:24Z) - Latent Processes Identification From Multi-View Time Series [17.33428123777779]
本稿では,データ生成過程を逆転させて識別可能性を高めるために,コントラスト学習技術を用いた新しいフレームワークを提案する。
MuLTIは、最適輸送公式の確立によって、対応する重複変数をマージする置換機構を統合する。
論文 参考訳(メタデータ) (2023-05-14T14:21:58Z) - Robust Detection of Lead-Lag Relationships in Lagged Multi-Factor Models [61.10851158749843]
データ固有のリード-ラグ関係を発見することで、重要な洞察を得ることができる。
階層化多要素モデルにおけるリードラグ関係のロバスト検出のためのクラスタリング駆動手法を開発した。
論文 参考訳(メタデータ) (2023-05-11T10:30:35Z) - Optimal Event Monitoring through Internet Mashup over Multivariate Time
Series [77.34726150561087]
このフレームワークは、モデル定義、クエリ、パラメータ学習、モデル評価、データ監視、決定レコメンデーション、Webポータルのサービスをサポートする。
さらに、MTSAデータモデルとクエリ言語を拡張して、学習、監視、レコメンデーションのサービスにおいて、この種の問題をサポートする。
論文 参考訳(メタデータ) (2022-10-18T16:56:17Z) - Multi-scale Attention Flow for Probabilistic Time Series Forecasting [68.20798558048678]
マルチスケールアテンション正規化フロー(MANF)と呼ばれる非自己回帰型ディープラーニングモデルを提案する。
我々のモデルは累積誤差の影響を回避し、時間の複雑さを増大させない。
本モデルは,多くの多変量データセット上での最先端性能を実現する。
論文 参考訳(メタデータ) (2022-05-16T07:53:42Z) - Enhancing Transformer Efficiency for Multivariate Time Series
Classification [12.128991867050487]
本稿では,モデル効率と精度,複雑さの関係を考察する手法を提案する。
ベンチマークMSSデータセットの総合実験により,本手法の有効性が示された。
論文 参考訳(メタデータ) (2022-03-28T03:25:19Z) - Deep Cellular Recurrent Network for Efficient Analysis of Time-Series
Data with Spatial Information [52.635997570873194]
本研究では,空間情報を用いた複雑な多次元時系列データを処理するための新しいディープセルリカレントニューラルネットワーク(DCRNN)アーキテクチャを提案する。
提案するアーキテクチャは,文献に比較して,学習可能なパラメータをかなり少なくしつつ,最先端の性能を実現している。
論文 参考訳(メタデータ) (2021-01-12T20:08:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。