論文の概要: Correcting misinformation on social media with a large language model
- arxiv url: http://arxiv.org/abs/2403.11169v1
- Date: Sun, 17 Mar 2024 10:59:09 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-19 18:15:50.860741
- Title: Correcting misinformation on social media with a large language model
- Title(参考訳): 大規模言語モデルを用いたソーシャルメディア上の誤情報訂正
- Authors: Xinyi Zhou, Ashish Sharma, Amy X. Zhang, Tim Althoff,
- Abstract要約: 専門家や平民は、不正確な情報を手動で特定し説明することによって誤情報を修正するのに効果的であることが示されている。
LLMは誤情報を生成しやすくするが、近年の情報不足や、偽のコンテンツや参照を生成する傾向、マルチモーダル情報に対処する際の制限などにより、難航する。
本稿では,最新の情報へのアクセスと信頼性を付加したLCMであるMUSEを提案する。
- 参考スコア(独自算出の注目度): 14.69780455372507
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Misinformation undermines public trust in science and democracy, particularly on social media where inaccuracies can spread rapidly. Experts and laypeople have shown to be effective in correcting misinformation by manually identifying and explaining inaccuracies. Nevertheless, this approach is difficult to scale, a concern as technologies like large language models (LLMs) make misinformation easier to produce. LLMs also have versatile capabilities that could accelerate misinformation correction; however, they struggle due to a lack of recent information, a tendency to produce plausible but false content and references, and limitations in addressing multimodal information. To address these issues, we propose MUSE, an LLM augmented with access to and credibility evaluation of up-to-date information. By retrieving contextual evidence and refutations, MUSE can provide accurate and trustworthy explanations and references. It also describes visuals and conducts multimodal searches for correcting multimodal misinformation. We recruit fact-checking and journalism experts to evaluate corrections to real social media posts across 13 dimensions, ranging from the factuality of explanation to the relevance of references. The results demonstrate MUSE's ability to correct misinformation promptly after appearing on social media; overall, MUSE outperforms GPT-4 by 37% and even high-quality corrections from laypeople by 29%. This work underscores the potential of LLMs to combat real-world misinformation effectively and efficiently.
- Abstract(参考訳): 誤報は科学と民主主義に対する大衆の信頼を損なう。
専門家や平民は、不正確な情報を手動で特定し説明することによって誤情報を修正するのに効果的であることが示されている。
しかし、大規模言語モデル(LLM)のような技術が誤情報を生成しやすくするため、このアプローチはスケールするのが困難である。
LLMはまた、誤情報訂正を加速させる万能性も持っているが、近年の情報不足や、偽のコンテンツや参照を生成する傾向、マルチモーダル情報に対処する際の制限などにより、これらは苦戦している。
これらの課題に対処するために,最新の情報へのアクセスと信頼性評価が可能なLLM拡張MUSEを提案する。
MUSEは文脈的証拠と反感を回収することで、正確で信頼できる説明と参照を提供することができる。
また、視覚を記述し、マルチモーダル誤報の訂正のためのマルチモーダル検索を行う。
我々はファクトチェックとジャーナリズムの専門家を雇い、13次元にわたる実際のソーシャルメディア投稿の修正を評価する。
その結果,MUSEはソーシャルメディアに現れるとすぐに誤報を訂正する能力を示し,総合的にはGPT-4が37%,質の高い修正も29%向上した。
この研究は、LLMが現実世界の誤報と効果的に戦う可能性を強調している。
関連論文リスト
- Characteristics of Political Misinformation Over the Past Decade [0.0]
本稿は、自然言語処理を用いて、12年間にわたる政治的誤報の共通の特徴を見出す。
その結果,近年は誤報が飛躍的に増加しており,テキストや画像の一次情報モダリティを持つソースから情報を共有する傾向が強まっていることが示唆された。
誤報を表す文には、正確な情報よりも否定的な感情が含まれていることが判明した。
論文 参考訳(メタデータ) (2024-11-09T09:12:39Z) - MisinfoEval: Generative AI in the Era of "Alternative Facts" [50.069577397751175]
本稿では,大規模言語モデル(LLM)に基づく誤情報介入の生成と評価を行うフレームワークを提案する。
本研究では,(1)誤情報介入の効果を測定するための模擬ソーシャルメディア環境の実験,(2)ユーザの人口動態や信念に合わせたパーソナライズされた説明を用いた第2の実験について述べる。
以上の結果から,LSMによる介入はユーザの行動の修正に極めて有効であることが確認された。
論文 参考訳(メタデータ) (2024-10-13T18:16:50Z) - Crowd Intelligence for Early Misinformation Prediction on Social Media [29.494819549803772]
本稿では,クラウドインテリジェンスに基づく早期誤報予測手法であるCROWDSHIELDを紹介する。
私たちは2つの次元(スタンスとクレーム)を捉えるためにQラーニングを採用しています。
我々は手動で誤情報検出を行うTwitterコーパスであるMISTを提案する。
論文 参考訳(メタデータ) (2024-08-08T13:45:23Z) - Missci: Reconstructing Fallacies in Misrepresented Science [84.32990746227385]
ソーシャルネットワーク上の健康関連の誤報は、意思決定の貧弱さと現実世界の危険につながる可能性がある。
ミスシは、誤った推論のための新しい議論理論モデルである。
大規模言語モデルの批判的推論能力をテストするためのデータセットとしてMissciを提案する。
論文 参考訳(メタデータ) (2024-06-05T12:11:10Z) - AMMeBa: A Large-Scale Survey and Dataset of Media-Based Misinformation In-The-Wild [1.4193873432298625]
オンラインメディアをベースとした誤情報に注釈を付けるために,ヒトラプターを用いた2年間の研究結果を示す。
偽情報クレームにおける生成AIベースのコンテンツの増加を示す。
また、歴史的に支配的な「単純な」手法、特に文脈操作を示す。
論文 参考訳(メタデータ) (2024-05-19T23:05:53Z) - The Earth is Flat? Unveiling Factual Errors in Large Language Models [89.94270049334479]
ChatGPTのような大規模言語モデル(LLM)は、事前学習や微調整の知識が豊富にあるため、様々な応用がある。
それにもかかわらず、医療、ジャーナリズム、教育といった重要な分野に懸念を抱き、事実と常識の誤りを引き起こす傾向にある。
LLMにおける事実不正確な事実を明らかにすることを目的とした,新しい自動テストフレームワークであるFactCheckerを紹介する。
論文 参考訳(メタデータ) (2024-01-01T14:02:27Z) - Countering Misinformation via Emotional Response Generation [15.383062216223971]
ソーシャルメディアプラットフォーム(SMP)における誤情報拡散は、公衆衛生、社会的結束、民主主義に重大な危険をもたらす。
これまでの研究では、社会的訂正が誤情報を抑制する効果的な方法であることが示された。
約1万のクレーム応答対からなる最初の大規模データセットであるVerMouthを提案する。
論文 参考訳(メタデータ) (2023-11-17T15:37:18Z) - From Chaos to Clarity: Claim Normalization to Empower Fact-Checking [57.024192702939736]
Claim Normalization(別名 ClaimNorm)は、複雑でノイズの多いソーシャルメディア投稿を、より単純で分かりやすい形式に分解することを目的としている。
本稿では,チェーン・オブ・ソートとクレーム・チェック・バシネス推定を利用した先駆的アプローチであるCACNを提案する。
実験により, CACNは様々な評価尺度において, いくつかの基準値を上回る性能を示した。
論文 参考訳(メタデータ) (2023-10-22T16:07:06Z) - ManiTweet: A New Benchmark for Identifying Manipulation of News on Social Media [74.93847489218008]
ソーシャルメディア上でのニュースの操作を識別し,ソーシャルメディア投稿の操作を検出し,操作された情報や挿入された情報を特定することを目的とした,新しいタスクを提案する。
この課題を研究するために,データ収集スキーマを提案し,3.6K対のツイートとそれに対応する記事からなるManiTweetと呼ばれるデータセットをキュレートした。
我々の分析では、このタスクは非常に難しいことを示し、大きな言語モデル(LLM)は不満足なパフォーマンスをもたらす。
論文 参考訳(メタデータ) (2023-05-23T16:40:07Z) - Adherence to Misinformation on Social Media Through Socio-Cognitive and
Group-Based Processes [79.79659145328856]
誤報が広まると、これはソーシャルメディア環境が誤報の付着を可能にするためである、と我々は主張する。
偏光と誤情報付着が密接な関係にあると仮定する。
論文 参考訳(メタデータ) (2022-06-30T12:34:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。