論文の概要: Correcting misinformation on social media with a large language model
- arxiv url: http://arxiv.org/abs/2403.11169v4
- Date: Tue, 3 Sep 2024 05:51:40 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-04 19:15:46.316625
- Title: Correcting misinformation on social media with a large language model
- Title(参考訳): 大規模言語モデルを用いたソーシャルメディア上の誤情報訂正
- Authors: Xinyi Zhou, Ashish Sharma, Amy X. Zhang, Tim Althoff,
- Abstract要約: 現実世界の誤報は、しばしばマルチモーダルであり、因果関係を混同するような様々な戦術で誤解を招くことがある。
このような誤報は、特にソーシャルメディアにおいて、ひどく過小評価され、対処が困難であり、様々な社会的ドメインに害を与えている。
本稿では,最新の情報へのアクセスと信頼性を付加したLCMであるMUSEを提案する。
- 参考スコア(独自算出の注目度): 14.69780455372507
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Real-world misinformation, often multimodal, can be partially or fully factual but misleading using diverse tactics like conflating correlation with causation. Such misinformation is severely understudied, challenging to address, and harms various social domains, particularly on social media, where it can spread rapidly. High-quality and timely correction of misinformation that identifies and explains its (in)accuracies effectively reduces false beliefs. Despite the wide acceptance of manual correction, it is difficult to be timely and scalable. While LLMs have versatile capabilities that could accelerate misinformation correction, they struggle due to a lack of recent information, a tendency to produce false content, and limitations in addressing multimodal information. We propose MUSE, an LLM augmented with access to and credibility evaluation of up-to-date information. By retrieving evidence as refutations or supporting context, MUSE identifies and explains content (in)accuracies with references. It conducts multimodal retrieval and interprets visual content to verify and correct multimodal content. Given the absence of a comprehensive evaluation approach, we propose 13 dimensions of misinformation correction quality. Then, fact-checking experts evaluate responses to social media content that are not presupposed to be misinformation but broadly include (partially) incorrect and correct posts that may (not) be misleading. Results demonstrate MUSE's ability to write high-quality responses to potential misinformation--across modalities, tactics, domains, political leanings, and for information that has not previously been fact-checked online--within minutes of its appearance on social media. Overall, MUSE outperforms GPT-4 by 37% and even high-quality responses from laypeople by 29%. Our work provides a general methodological and evaluative framework to correct misinformation at scale.
- Abstract(参考訳): 現実世界の誤報は、しばしばマルチモーダルであり、部分的にあるいは完全に事実であるが、因果関係を混同するような多様な戦術を用いて誤解を招くことがある。
このような誤報は深刻な過小評価を受け、対処が困難であり、特に急速に拡散するソーシャルメディアにおいて、様々な社会的ドメインに害を与えている。
偽情報の高品質でタイムリーな修正は、その正確さを識別し、説明することで、偽の信条を効果的に減らす。
手動修正が広く受け入れられているにもかかわらず、タイムリーでスケーラブルであることは困難である。
LLMには、誤情報訂正を加速させる汎用的な機能があるが、最近の情報不足、偽コンテンツを生成する傾向、マルチモーダル情報に対処する際の制限などにより、それらは苦戦している。
本稿では,最新の情報へのアクセスと信頼性を付加したLCMであるMUSEを提案する。
MUSEは、証拠を反証として回収したり、コンテキストをサポートすることで、コンテンツ(イン)の正確さを参照で識別し、説明します。
マルチモーダル検索を行い、視覚コンテンツを解釈して、マルチモーダルコンテンツの検証と修正を行う。
包括的評価手法が欠如していることから,誤情報補正の品質の13次元について提案する。
次に、ファクトチェックの専門家は、誤情報を前提としないと思われるソーシャルメディアコンテンツに対する反応を評価し、(一部は)誤解を招く可能性のある不正確で正しい投稿を広範囲に含んでいる。
その結果、MUSEは、あらゆるモダリティ、戦術、ドメイン、政治的傾き、そしてこれまでオンラインで事実確認されていない情報に対して、ソーシャルメディアに表示されてから数分も経たないうちに、潜在的な誤報に対する高品質な応答を書く能力を示した。
MUSEは総じてGPT-4を37%上回り、質の高い反応も29%上回っている。
我々の研究は、大規模な誤情報を修正するための一般的な方法論と評価の枠組みを提供する。
関連論文リスト
- Characteristics of Political Misinformation Over the Past Decade [0.0]
本稿は、自然言語処理を用いて、12年間にわたる政治的誤報の共通の特徴を見出す。
その結果,近年は誤報が飛躍的に増加しており,テキストや画像の一次情報モダリティを持つソースから情報を共有する傾向が強まっていることが示唆された。
誤報を表す文には、正確な情報よりも否定的な感情が含まれていることが判明した。
論文 参考訳(メタデータ) (2024-11-09T09:12:39Z) - MisinfoEval: Generative AI in the Era of "Alternative Facts" [50.069577397751175]
本稿では,大規模言語モデル(LLM)に基づく誤情報介入の生成と評価を行うフレームワークを提案する。
本研究では,(1)誤情報介入の効果を測定するための模擬ソーシャルメディア環境の実験,(2)ユーザの人口動態や信念に合わせたパーソナライズされた説明を用いた第2の実験について述べる。
以上の結果から,LSMによる介入はユーザの行動の修正に極めて有効であることが確認された。
論文 参考訳(メタデータ) (2024-10-13T18:16:50Z) - Crowd Intelligence for Early Misinformation Prediction on Social Media [29.494819549803772]
本稿では,クラウドインテリジェンスに基づく早期誤報予測手法であるCROWDSHIELDを紹介する。
私たちは2つの次元(スタンスとクレーム)を捉えるためにQラーニングを採用しています。
我々は手動で誤情報検出を行うTwitterコーパスであるMISTを提案する。
論文 参考訳(メタデータ) (2024-08-08T13:45:23Z) - Missci: Reconstructing Fallacies in Misrepresented Science [84.32990746227385]
ソーシャルネットワーク上の健康関連の誤報は、意思決定の貧弱さと現実世界の危険につながる可能性がある。
ミスシは、誤った推論のための新しい議論理論モデルである。
大規模言語モデルの批判的推論能力をテストするためのデータセットとしてMissciを提案する。
論文 参考訳(メタデータ) (2024-06-05T12:11:10Z) - AMMeBa: A Large-Scale Survey and Dataset of Media-Based Misinformation In-The-Wild [1.4193873432298625]
オンラインメディアをベースとした誤情報に注釈を付けるために,ヒトラプターを用いた2年間の研究結果を示す。
偽情報クレームにおける生成AIベースのコンテンツの増加を示す。
また、歴史的に支配的な「単純な」手法、特に文脈操作を示す。
論文 参考訳(メタデータ) (2024-05-19T23:05:53Z) - The Earth is Flat? Unveiling Factual Errors in Large Language Models [89.94270049334479]
ChatGPTのような大規模言語モデル(LLM)は、事前学習や微調整の知識が豊富にあるため、様々な応用がある。
それにもかかわらず、医療、ジャーナリズム、教育といった重要な分野に懸念を抱き、事実と常識の誤りを引き起こす傾向にある。
LLMにおける事実不正確な事実を明らかにすることを目的とした,新しい自動テストフレームワークであるFactCheckerを紹介する。
論文 参考訳(メタデータ) (2024-01-01T14:02:27Z) - Countering Misinformation via Emotional Response Generation [15.383062216223971]
ソーシャルメディアプラットフォーム(SMP)における誤情報拡散は、公衆衛生、社会的結束、民主主義に重大な危険をもたらす。
これまでの研究では、社会的訂正が誤情報を抑制する効果的な方法であることが示された。
約1万のクレーム応答対からなる最初の大規模データセットであるVerMouthを提案する。
論文 参考訳(メタデータ) (2023-11-17T15:37:18Z) - From Chaos to Clarity: Claim Normalization to Empower Fact-Checking [57.024192702939736]
Claim Normalization(別名 ClaimNorm)は、複雑でノイズの多いソーシャルメディア投稿を、より単純で分かりやすい形式に分解することを目的としている。
本稿では,チェーン・オブ・ソートとクレーム・チェック・バシネス推定を利用した先駆的アプローチであるCACNを提案する。
実験により, CACNは様々な評価尺度において, いくつかの基準値を上回る性能を示した。
論文 参考訳(メタデータ) (2023-10-22T16:07:06Z) - ManiTweet: A New Benchmark for Identifying Manipulation of News on Social Media [74.93847489218008]
ソーシャルメディア上でのニュースの操作を識別し,ソーシャルメディア投稿の操作を検出し,操作された情報や挿入された情報を特定することを目的とした,新しいタスクを提案する。
この課題を研究するために,データ収集スキーマを提案し,3.6K対のツイートとそれに対応する記事からなるManiTweetと呼ばれるデータセットをキュレートした。
我々の分析では、このタスクは非常に難しいことを示し、大きな言語モデル(LLM)は不満足なパフォーマンスをもたらす。
論文 参考訳(メタデータ) (2023-05-23T16:40:07Z) - Adherence to Misinformation on Social Media Through Socio-Cognitive and
Group-Based Processes [79.79659145328856]
誤報が広まると、これはソーシャルメディア環境が誤報の付着を可能にするためである、と我々は主張する。
偏光と誤情報付着が密接な関係にあると仮定する。
論文 参考訳(メタデータ) (2022-06-30T12:34:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。