Artifact Feature Purification for Cross-domain Detection of AI-generated Images
- URL: http://arxiv.org/abs/2403.11172v1
- Date: Sun, 17 Mar 2024 11:17:06 GMT
- Title: Artifact Feature Purification for Cross-domain Detection of AI-generated Images
- Authors: Zheling Meng, Bo Peng, Jing Dong, Tieniu Tan,
- Abstract summary: Existing generated image detection methods suffer from performance drop when faced with out-of-domain generators and image scenes.
We propose Artifact Purification Network (APN) to facilitate the artifact extraction from generated images through the explicit and implicit purification processes.
For cross-generator detection, the average accuracy of APN is 5.6% 16.4% higher than the previous 10 methods on GenImage dataset and 1.7% 50.1% on DiffusionForensics dataset.
- Score: 38.18870936370117
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In the era of AIGC, the fast development of visual content generation technologies, such as diffusion models, bring potential security risks to our society. Existing generated image detection methods suffer from performance drop when faced with out-of-domain generators and image scenes. To relieve this problem, we propose Artifact Purification Network (APN) to facilitate the artifact extraction from generated images through the explicit and implicit purification processes. For the explicit one, a suspicious frequency-band proposal method and a spatial feature decomposition method are proposed to extract artifact-related features. For the implicit one, a training strategy based on mutual information estimation is proposed to further purify the artifact-related features. Experiments show that for cross-generator detection, the average accuracy of APN is 5.6% ~ 16.4% higher than the previous 10 methods on GenImage dataset and 1.7% ~ 50.1% on DiffusionForensics dataset. For cross-scene detection, APN maintains its high performance. Via visualization analysis, we find that the proposed method extracts flexible forgery patterns and condenses the forgery information diluted in irrelevant features. We also find that the artifact features APN focuses on across generators and scenes are global and diverse. The code will be available on GitHub.
Related papers
- Semi-Truths: A Large-Scale Dataset of AI-Augmented Images for Evaluating Robustness of AI-Generated Image detectors [62.63467652611788]
We introduce SEMI-TRUTHS, featuring 27,600 real images, 223,400 masks, and 1,472,700 AI-augmented images.
Each augmented image is accompanied by metadata for standardized and targeted evaluation of detector robustness.
Our findings suggest that state-of-the-art detectors exhibit varying sensitivities to the types and degrees of perturbations, data distributions, and augmentation methods used.
arXiv Detail & Related papers (2024-11-12T01:17:27Z) - FSBI: Deepfakes Detection with Frequency Enhanced Self-Blended Images [17.707379977847026]
This paper introduces a Frequency Enhanced Self-Blended Images approach for deepfakes detection.
The proposed approach has been evaluated on FF++ and Celeb-DF datasets.
arXiv Detail & Related papers (2024-06-12T20:15:00Z) - DA-HFNet: Progressive Fine-Grained Forgery Image Detection and Localization Based on Dual Attention [12.36906630199689]
We construct a DA-HFNet forged image dataset guided by text or image-assisted GAN and Diffusion model.
Our goal is to utilize a hierarchical progressive network to capture forged artifacts at different scales for detection and localization.
arXiv Detail & Related papers (2024-06-03T16:13:33Z) - GenFace: A Large-Scale Fine-Grained Face Forgery Benchmark and Cross Appearance-Edge Learning [50.7702397913573]
The rapid advancement of photorealistic generators has reached a critical juncture where the discrepancy between authentic and manipulated images is increasingly indistinguishable.
Although there have been a number of publicly available face forgery datasets, the forgery faces are mostly generated using GAN-based synthesis technology.
We propose a large-scale, diverse, and fine-grained high-fidelity dataset, namely GenFace, to facilitate the advancement of deepfake detection.
arXiv Detail & Related papers (2024-02-03T03:13:50Z) - DiAD: A Diffusion-based Framework for Multi-class Anomaly Detection [55.48770333927732]
We propose a Difusion-based Anomaly Detection (DiAD) framework for multi-class anomaly detection.
It consists of a pixel-space autoencoder, a latent-space Semantic-Guided (SG) network with a connection to the stable diffusion's denoising network, and a feature-space pre-trained feature extractor.
Experiments on MVTec-AD and VisA datasets demonstrate the effectiveness of our approach.
arXiv Detail & Related papers (2023-12-11T18:38:28Z) - Perceptual Artifacts Localization for Image Synthesis Tasks [59.638307505334076]
We introduce a novel dataset comprising 10,168 generated images, each annotated with per-pixel perceptual artifact labels.
A segmentation model, trained on our proposed dataset, effectively localizes artifacts across a range of tasks.
We propose an innovative zoom-in inpainting pipeline that seamlessly rectifies perceptual artifacts in the generated images.
arXiv Detail & Related papers (2023-10-09T10:22:08Z) - Exploring Incompatible Knowledge Transfer in Few-shot Image Generation [107.81232567861117]
Few-shot image generation learns to generate diverse and high-fidelity images from a target domain using a few reference samples.
Existing F SIG methods select, preserve and transfer prior knowledge from a source generator to learn the target generator.
We propose knowledge truncation, which is a complementary operation to knowledge preservation and is implemented by a lightweight pruning-based method.
arXiv Detail & Related papers (2023-04-15T14:57:15Z) - High-Resolution UAV Image Generation for Sorghum Panicle Detection [23.88932181375298]
We present an approach that uses synthetic training images from generative adversarial networks (GANs) for data augmentation to enhance the performance of Sorghum panicle detection and counting.
Our method can generate synthetic high-resolution UAV RGB images with panicle labels by using image-to-image translation GANs with a limited ground truth dataset of real UAV RGB images.
arXiv Detail & Related papers (2022-05-08T20:26:56Z) - DeepFake Detection by Analyzing Convolutional Traces [0.0]
We focus on the analysis of Deepfakes of human faces with the objective of creating a new detection method.
The proposed technique, by means of an Expectation Maximization (EM) algorithm, extracts a set of local features specifically addressed to model the underlying convolutional generative process.
Results demonstrated the effectiveness of the technique in distinguishing the different architectures and the corresponding generation process.
arXiv Detail & Related papers (2020-04-22T09:02:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.