TAG: Guidance-free Open-Vocabulary Semantic Segmentation
- URL: http://arxiv.org/abs/2403.11197v1
- Date: Sun, 17 Mar 2024 12:49:02 GMT
- Title: TAG: Guidance-free Open-Vocabulary Semantic Segmentation
- Authors: Yasufumi Kawano, Yoshimitsu Aoki,
- Abstract summary: We propose TAG, which achieves Training,.
and Guidance-free open-vocabulary segmentation.
It retrieves class labels from an external database, providing flexibility to adapt to new scenarios.
Our TAG achieves state-of-the-art results on PascalVOC, PascalContext and ADE20K for open-vocabulary segmentation without given class names.
- Score: 6.236890292833387
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Semantic segmentation is a crucial task in computer vision, where each pixel in an image is classified into a category. However, traditional methods face significant challenges, including the need for pixel-level annotations and extensive training. Furthermore, because supervised learning uses a limited set of predefined categories, models typically struggle with rare classes and cannot recognize new ones. Unsupervised and open-vocabulary segmentation, proposed to tackle these issues, faces challenges, including the inability to assign specific class labels to clusters and the necessity of user-provided text queries for guidance. In this context, we propose a novel approach, TAG which achieves Training, Annotation, and Guidance-free open-vocabulary semantic segmentation. TAG utilizes pre-trained models such as CLIP and DINO to segment images into meaningful categories without additional training or dense annotations. It retrieves class labels from an external database, providing flexibility to adapt to new scenarios. Our TAG achieves state-of-the-art results on PascalVOC, PascalContext and ADE20K for open-vocabulary segmentation without given class names, i.e. improvement of +15.3 mIoU on PascalVOC. All code and data will be released at https://github.com/Valkyrja3607/TAG.
Related papers
- Towards Open-Vocabulary Semantic Segmentation Without Semantic Labels [53.8817160001038]
We propose a novel method, PixelCLIP, to adapt the CLIP image encoder for pixel-level understanding.
To address the challenges of leveraging masks without semantic labels, we devise an online clustering algorithm.
PixelCLIP shows significant performance improvements over CLIP and competitive results compared to caption-supervised methods.
arXiv Detail & Related papers (2024-09-30T01:13:03Z) - Scribbles for All: Benchmarking Scribble Supervised Segmentation Across Datasets [51.74296438621836]
We introduce Scribbles for All, a label and training data generation algorithm for semantic segmentation trained on scribble labels.
The main limitation of scribbles as source for weak supervision is the lack of challenging datasets for scribble segmentation.
Scribbles for All provides scribble labels for several popular segmentation datasets and provides an algorithm to automatically generate scribble labels for any dataset with dense annotations.
arXiv Detail & Related papers (2024-08-22T15:29:08Z) - Vocabulary-free Image Classification and Semantic Segmentation [71.78089106671581]
We introduce the Vocabulary-free Image Classification (VIC) task, which aims to assign a class from an un-constrained language-induced semantic space to an input image without needing a known vocabulary.
VIC is challenging due to the vastness of the semantic space, which contains millions of concepts, including fine-grained categories.
We propose Category Search from External Databases (CaSED), a training-free method that leverages a pre-trained vision-language model and an external database.
arXiv Detail & Related papers (2024-04-16T19:27:21Z) - Auto-Vocabulary Semantic Segmentation [13.410217680999462]
We introduce textitAuto-Vocabulary Semantics (AVS), advancing open-ended image understanding.
Our framework autonomously identifies relevant class names using enhanced BLIP embedding.
Our method sets new benchmarks on datasets such as PASCAL VOC and Context, ADE20K, and Cityscapes for AVS.
arXiv Detail & Related papers (2023-12-07T18:55:52Z) - Diffusion Models for Open-Vocabulary Segmentation [79.02153797465324]
OVDiff is a novel method that leverages generative text-to-image diffusion models for unsupervised open-vocabulary segmentation.
It relies solely on pre-trained components and outputs the synthesised segmenter directly, without training.
arXiv Detail & Related papers (2023-06-15T17:51:28Z) - Open-world Semantic Segmentation via Contrasting and Clustering
Vision-Language Embedding [95.78002228538841]
We propose a new open-world semantic segmentation pipeline that makes the first attempt to learn to segment semantic objects of various open-world categories without any efforts on dense annotations.
Our method can directly segment objects of arbitrary categories, outperforming zero-shot segmentation methods that require data labeling on three benchmark datasets.
arXiv Detail & Related papers (2022-07-18T09:20:04Z) - Semantic Segmentation In-the-Wild Without Seeing Any Segmentation
Examples [34.97652735163338]
We propose a novel approach for creating semantic segmentation masks for every object.
Our method takes as input the image-level labels of the class categories present in the image.
The output of this stage provides pixel-level pseudo-labels, instead of the manual pixel-level labels required by supervised methods.
arXiv Detail & Related papers (2021-12-06T17:32:38Z) - A Closer Look at Self-training for Zero-Label Semantic Segmentation [53.4488444382874]
Being able to segment unseen classes not observed during training is an important technical challenge in deep learning.
Prior zero-label semantic segmentation works approach this task by learning visual-semantic embeddings or generative models.
We propose a consistency regularizer to filter out noisy pseudo-labels by taking the intersections of the pseudo-labels generated from different augmentations of the same image.
arXiv Detail & Related papers (2021-04-21T14:34:33Z) - PCAMs: Weakly Supervised Semantic Segmentation Using Point Supervision [12.284208932393073]
This paper presents a novel procedure for producing semantic segmentation from images given some point level annotations.
We propose training a CNN that is normally fully supervised using our pseudo labels in place of ground truth labels.
Our method achieves state of the art results for point supervised semantic segmentation on the PASCAL VOC 2012 dataset citeeveringham2010pascal, even outperforming state of the art methods for stronger bounding box and squiggle supervision.
arXiv Detail & Related papers (2020-07-10T21:25:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.