CBR - Boosting Adaptive Classification By Retrieval of Encrypted Network Traffic with Out-of-distribution
- URL: http://arxiv.org/abs/2403.11206v1
- Date: Sun, 17 Mar 2024 13:14:09 GMT
- Title: CBR - Boosting Adaptive Classification By Retrieval of Encrypted Network Traffic with Out-of-distribution
- Authors: Amir Lukach, Ran Dubin, Amit Dvir, Chen Hajaj,
- Abstract summary: One of the common approaches is using Machine learning or Deep Learning-based solutions on a fixed number of classes.
One of the solutions for handling unknown classes is to retrain the model, however, retraining models every time they become obsolete is both resource and time-consuming.
In this paper, we introduce Adaptive Classification By Retrieval CBR, a novel approach for encrypted network traffic classification.
- Score: 9.693391036125908
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Encrypted network traffic Classification tackles the problem from different approaches and with different goals. One of the common approaches is using Machine learning or Deep Learning-based solutions on a fixed number of classes, leading to misclassification when an unknown class is given as input. One of the solutions for handling unknown classes is to retrain the model, however, retraining models every time they become obsolete is both resource and time-consuming. Therefore, there is a growing need to allow classification models to detect and adapt to new classes dynamically, without retraining, but instead able to detect new classes using few shots learning [1]. In this paper, we introduce Adaptive Classification By Retrieval CBR, a novel approach for encrypted network traffic classification. Our new approach is based on an ANN-based method, which allows us to effectively identify new and existing classes without retraining the model. The novel approach is simple, yet effective and achieved similar results to RF with up to 5% difference (usually less than that) in the classification tasks while having a slight decrease in the case of new samples (from new classes) without retraining. To summarize, the new method is a real-time classification, which can classify new classes without retraining. Furthermore, our solution can be used as a complementary solution alongside RF or any other machine/deep learning classification method, as an aggregated solution.
Related papers
- Rethinking Classifier Re-Training in Long-Tailed Recognition: A Simple
Logits Retargeting Approach [102.0769560460338]
We develop a simple logits approach (LORT) without the requirement of prior knowledge of the number of samples per class.
Our method achieves state-of-the-art performance on various imbalanced datasets, including CIFAR100-LT, ImageNet-LT, and iNaturalist 2018.
arXiv Detail & Related papers (2024-03-01T03:27:08Z) - Few-Shot Class-Incremental Learning via Training-Free Prototype
Calibration [67.69532794049445]
We find a tendency for existing methods to misclassify the samples of new classes into base classes, which leads to the poor performance of new classes.
We propose a simple yet effective Training-frEE calibratioN (TEEN) strategy to enhance the discriminability of new classes.
arXiv Detail & Related papers (2023-12-08T18:24:08Z) - Activate and Reject: Towards Safe Domain Generalization under Category
Shift [71.95548187205736]
We study a practical problem of Domain Generalization under Category Shift (DGCS)
It aims to simultaneously detect unknown-class samples and classify known-class samples in the target domains.
Compared to prior DG works, we face two new challenges: 1) how to learn the concept of unknown'' during training with only source known-class samples, and 2) how to adapt the source-trained model to unseen environments.
arXiv Detail & Related papers (2023-10-07T07:53:12Z) - RanPAC: Random Projections and Pre-trained Models for Continual Learning [59.07316955610658]
Continual learning (CL) aims to learn different tasks (such as classification) in a non-stationary data stream without forgetting old ones.
We propose a concise and effective approach for CL with pre-trained models.
arXiv Detail & Related papers (2023-07-05T12:49:02Z) - Complementary Learning Subnetworks for Parameter-Efficient
Class-Incremental Learning [40.13416912075668]
We propose a rehearsal-free CIL approach that learns continually via the synergy between two Complementary Learning Subnetworks.
Our method achieves competitive results against state-of-the-art methods, especially in accuracy gain, memory cost, training efficiency, and task-order.
arXiv Detail & Related papers (2023-06-21T01:43:25Z) - Incremental Deep Neural Network Learning using Classification Confidence
Thresholding [4.061135251278187]
Most modern neural networks for classification fail to take into account the concept of the unknown.
This paper proposes the Classification Confidence Threshold approach to prime neural networks for incremental learning.
arXiv Detail & Related papers (2021-06-21T22:46:28Z) - Class-Incremental Learning with Generative Classifiers [6.570917734205559]
We propose a new strategy for class-incremental learning: generative classification.
Our proposal is to learn the joint distribution p(x,y), factorized as p(x|y)p(y), and to perform classification using Bayes' rule.
As a proof-of-principle, here we implement this strategy by training a variational autoencoder for each class to be learned.
arXiv Detail & Related papers (2021-04-20T16:26:14Z) - Learning Adaptive Embedding Considering Incremental Class [55.21855842960139]
Class-Incremental Learning (CIL) aims to train a reliable model with the streaming data, which emerges unknown classes sequentially.
Different from traditional closed set learning, CIL has two main challenges: 1) Novel class detection.
After the novel classes are detected, the model needs to be updated without re-training using entire previous data.
arXiv Detail & Related papers (2020-08-31T04:11:24Z) - Two-Level Residual Distillation based Triple Network for Incremental
Object Detection [21.725878050355824]
We propose a novel incremental object detector based on Faster R-CNN to continuously learn from new object classes without using old data.
It is a triple network where an old model and a residual model as assistants for helping the incremental model learning on new classes without forgetting the previous learned knowledge.
arXiv Detail & Related papers (2020-07-27T11:04:57Z) - ReMarNet: Conjoint Relation and Margin Learning for Small-Sample Image
Classification [49.87503122462432]
We introduce a novel neural network termed Relation-and-Margin learning Network (ReMarNet)
Our method assembles two networks of different backbones so as to learn the features that can perform excellently in both of the aforementioned two classification mechanisms.
Experiments on four image datasets demonstrate that our approach is effective in learning discriminative features from a small set of labeled samples.
arXiv Detail & Related papers (2020-06-27T13:50:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.