Observation of spin-electric transitions in a molecular exchange qubit
- URL: http://arxiv.org/abs/2403.11214v1
- Date: Sun, 17 Mar 2024 13:28:14 GMT
- Title: Observation of spin-electric transitions in a molecular exchange qubit
- Authors: Florian le Mardelé, Ivan Mohelský, Jan Wyzula, Milan Orlita, Philippe Turek, Filippo Troiani, Athanassios K. Boudalis,
- Abstract summary: We perform low-temperature magnetic far-IR spectroscopy on a molecular spin triangle (Fe3)
We provide the first experimental evidence of spin-electric transitions in polynuclear complexes.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Electric fields represent an ideal means for controlling spins at the nanoscale and, more specifically, for manipulating protected degrees of freedom in multispin systems. Here we perform low-temperature magnetic far-IR spectroscopy on a molecular spin triangle (Fe3) and provide the first experimental evidence of spin-electric transitions in polynuclear complexes. The co-presence of electric- and magnetic-dipole transitions, allows us to estimate the spin-electric coupling. Based on spin Hamiltonian simulations of the spectra, we identify the observed transitions and introduce the concept of a generalized exchange qubit. This applies to a wide class of molecular spin triangles, and includes the scalar chirality and the partial spin sum qubits as special cases.
Related papers
- Polarimetry With Spins in the Solid State [0.7852714805965528]
We recast the primary mechanism for spin readout in semiconductor-based quantum computers as polarimetry.
We perform polarimetry with spins through a silicon quantum dot exchanging a hole with a boron acceptor.
This work shows how spin misalignment sets a fundamental upper limit for the spin readout fidelity in quantum-computing systems.
arXiv Detail & Related papers (2024-10-23T13:40:08Z) - Spin torque driven electron paramagnetic resonance of a single spin in a pentacene molecule [0.0]
We demonstrate coherent driving of a single spin by a radiofrequency spin-polarized current.
With the excitation of electron paramagnetic resonance, we established dynamic control of single spins by spin torque.
arXiv Detail & Related papers (2024-06-25T13:03:43Z) - Electric field tuning of magnetic states in single magnetic molecules [21.048521617491502]
We propose a new mechanism to realize enhanced spin-electric coupling and flip the spin states by tuning the spin superexchange between local spins.
Applying electric field can tune a wide range of magnetic ground states, including ferromagnetic, ferrimagnetic, and antiferromagnetic configurations.
arXiv Detail & Related papers (2022-12-15T18:16:28Z) - Dispersive readout of molecular spin qudits [68.8204255655161]
We study the physics of a magnetic molecule described by a "giant" spin with multiple $d > 2$ spin states.
We derive an expression for the output modes in the dispersive regime of operation.
We find that the measurement of the cavity transmission allows to uniquely determine the spin state of the qudits.
arXiv Detail & Related papers (2021-09-29T18:00:09Z) - Anisotropic electron-nuclear interactions in a rotating quantum spin
bath [55.41644538483948]
Spin-bath interactions are strongly anisotropic, and rapid physical rotation has long been used in solid-state nuclear magnetic resonance.
We show that the interaction between electron spins of nitrogen-vacancy centers and a bath of $13$C nuclear spins introduces decoherence into the system.
Our findings offer new insights into the use of physical rotation for quantum control with implications for quantum systems having motional and rotational degrees of freedom that are not fixed.
arXiv Detail & Related papers (2021-05-16T06:15:00Z) - Controlled coherent dynamics of [VO(TPP)], a prototype molecular nuclear
qudit with an electronic ancilla [50.002949299918136]
We show that [VO(TPP)] (vanadyl tetraphenylporphyrinate) is a promising system suitable to implement quantum computation algorithms.
It embeds an electronic spin 1/2 coupled through hyperfine interaction to a nuclear spin 7/2, both characterized by remarkable coherence.
arXiv Detail & Related papers (2021-03-15T21:38:41Z) - Chemical tuning of spin clock transitions in molecular monomers based on
nuclear spin-free Ni(II) [52.259804540075514]
We report the existence of a sizeable quantum tunnelling splitting between the two lowest electronic spin levels of mononuclear Ni complexes.
The level anti-crossing, or magnetic clock transition, associated with this gap has been directly monitored by heat capacity experiments.
The comparison of these results with those obtained for a Co derivative, for which tunnelling is forbidden by symmetry, shows that the clock transition leads to an effective suppression of intermolecular spin-spin interactions.
arXiv Detail & Related papers (2021-03-04T13:31:40Z) - Spin emitters beyond the point dipole approximation in nanomagnonic
cavities [0.0]
Control over transition rates between spin states of emitters is crucial in a variety of fields ranging from quantum information science to the nanochemistry of free radicals.
We present an approach to drive a both electric and magnetic dipole-forbidden transition of a spin emitter by placing it in a nanomagnonic cavity.
arXiv Detail & Related papers (2020-12-08T19:00:02Z) - Quantum coherent spin-electric control in a molecular nanomagnet at
clock transitions [57.50861918173065]
Electrical control of spins at the nanoscale offers architectural advantages in spintronics.
Recent demonstrations of electric-field (E-field) sensitivities in molecular spin materials are tantalising.
E-field sensitivities reported so far are rather weak, prompting the question of how to design molecules with stronger spin-electric couplings.
arXiv Detail & Related papers (2020-05-03T09:27:31Z) - Spin current generation and control in carbon nanotubes by combining
rotation and magnetic field [78.72753218464803]
We study the quantum dynamics of ballistic electrons in rotating carbon nanotubes in the presence of a uniform magnetic field.
By suitably combining the applied magnetic field intensity and rotation speed, one can tune one of the currents to zero while keeping the other one finite, giving rise to a spin current generator.
arXiv Detail & Related papers (2020-01-20T08:54:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.