論文の概要: Efficiently Detecting Reentrancy Vulnerabilities in Complex Smart Contracts
- arxiv url: http://arxiv.org/abs/2403.11254v1
- Date: Sun, 17 Mar 2024 16:08:30 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-03-19 17:46:37.430542
- Title: Efficiently Detecting Reentrancy Vulnerabilities in Complex Smart Contracts
- Title(参考訳): 複雑なスマートコントラクトにおける一貫性の脆弱性を効果的に検出する
- Authors: Zexu Wang, Jiachi Chen, Yanlin Wang, Yu Zhang, Weizhe Zhang, Zibin Zheng,
- Abstract要約: 既存の脆弱性検出ツールは、複雑なコントラクトにおける脆弱性の効率性や検出成功率の面では不十分である。
SliSEは、複雑なコントラクトに対するReentrancy脆弱性を検出する堅牢で効率的な方法を提供する。
- 参考スコア(独自算出の注目度): 35.26195628798847
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Reentrancy vulnerability as one of the most notorious vulnerabilities, has been a prominent topic in smart contract security research. Research shows that existing vulnerability detection presents a range of challenges, especially as smart contracts continue to increase in complexity. Existing tools perform poorly in terms of efficiency and successful detection rates for vulnerabilities in complex contracts. To effectively detect reentrancy vulnerabilities in contracts with complex logic, we propose a tool named SliSE. SliSE's detection process consists of two stages: Warning Search and Symbolic Execution Verification. In Stage I, SliSE utilizes program slicing to analyze the Inter-contract Program Dependency Graph (I-PDG) of the contract, and collects suspicious vulnerability information as warnings. In Stage II, symbolic execution is employed to verify the reachability of these warnings, thereby enhancing vulnerability detection accuracy. SliSE obtained the best performance compared with eight state-of-the-art detection tools. It achieved an F1 score of 78.65%, surpassing the highest score recorded by an existing tool of 9.26%. Additionally, it attained a recall rate exceeding 90% for detection of contracts on Ethereum. Overall, SliSE provides a robust and efficient method for detection of Reentrancy vulnerabilities for complex contracts.
- Abstract(参考訳): 最も悪名高い脆弱性の1つとして、Reentrancyの脆弱性は、スマートコントラクトセキュリティ研究において顕著なトピックとなっている。
研究によると、既存の脆弱性検出は、特にスマートコントラクトが複雑さを増し続けているため、さまざまな課題をもたらしている。
既存のツールは、複雑なコントラクトにおける脆弱性の効率性や検出率の面では不十分である。
複雑なロジックを持つコントラクトにおいて、一貫性の脆弱性を効果的に検出するために、SliSEというツールを提案する。
SliSEの検出プロセスは、警告検索とシンボリック実行検証という2つの段階で構成されている。
ステージIでは、SliSEはプログラムスライシングを使用して契約の契約間プログラム依存グラフ(I-PDG)を分析し、不審な脆弱性情報を警告として収集する。
ステージIIでは、これらの警告の到達可能性を検証するためにシンボリック実行が使用され、それによって脆弱性検出精度が向上する。
SliSEは8つの最先端検出ツールと比較して最高のパフォーマンスを得た。
F1のスコアは78.65%に達し、既存のツールのスコアは9.26%を突破した。
さらに、Ethereum上のコントラクト検出のリコールレートが90%を超えている。
全体として、SliSEは複雑なコントラクトに対するReentrancy脆弱性を検出するための堅牢で効率的な方法を提供する。
関連論文リスト
- Automated Vulnerability Injection in Solidity Smart Contracts: A Mutation-Based Approach for Benchmark Development [2.0074256613821033]
この研究は、突然変異シードが脆弱性をSolidityベースのスマートコントラクトに効果的に注入できるかどうかを評価する。
パターンベースの突然変異演算子を利用して、脆弱なスマートコントラクトを生成するツールであるMuSeを提案する。
静的解析ツールであるSlitherを用いて、これらの脆弱なスマートコントラクトを分析し、それらを特定し、妥当性を評価する能力について検討した。
論文 参考訳(メタデータ) (2025-04-22T14:46:18Z) - SmartBugBert: BERT-Enhanced Vulnerability Detection for Smart Contract Bytecode [0.7018579932647147]
本稿では,BERTに基づくディープラーニングと制御フローグラフ(CFG)解析を組み合わせて,バイトコードから直接脆弱性を検出する新しいアプローチであるSmartBugBertを紹介する。
提案手法は,まずスマートコントラクトバイトコードを最適化されたオペコードシーケンスに分解し,TF-IDFを用いて意味的特徴を抽出し,実行ロジックをキャプチャするために制御フローグラフを構築し,ターゲット分析のために脆弱なCFGフラグメントを分離する。
論文 参考訳(メタデータ) (2025-04-07T12:30:12Z) - SmartLLM: Smart Contract Auditing using Custom Generative AI [0.0]
本稿では,LLaMA 3.1モデルにレトリーバル拡張生成(RAG)を応用した新しいアプローチであるSmartLLMを紹介する。
ERC標準からドメイン固有の知識を統合することで、SmartLLMはMythrilやSlitherのような静的解析ツールよりも優れたパフォーマンスを実現している。
実験の結果、100%の完全なリコールと70%の精度スコアが示され、脆弱性の特定におけるモデルの堅牢性を強調した。
論文 参考訳(メタデータ) (2025-02-17T06:22:05Z) - The Impact of SBOM Generators on Vulnerability Assessment in Python: A Comparison and a Novel Approach [56.4040698609393]
Software Bill of Materials (SBOM) は、ソフトウェア構成における透明性と妥当性を高めるツールとして推奨されている。
現在のSBOM生成ツールは、コンポーネントや依存関係を識別する際の不正確さに悩まされることが多い。
提案するPIP-sbomは,その欠点に対処する新しいピップインスパイアされたソリューションである。
論文 参考訳(メタデータ) (2024-09-10T10:12:37Z) - Retrieval Augmented Generation Integrated Large Language Models in Smart Contract Vulnerability Detection [0.0]
分散ファイナンス(DeFi)には、スマートコントラクトの脆弱性による大きな損失が伴っている。
攻撃が頻発するにつれて、監査サービスの必要性と需要が高まっている。
本研究では,大規模言語モデル(LLM)とRAG(Retrieval-Augmented Generation)を統合することにより,既存のフレームワークを構築する。
論文 参考訳(メタデータ) (2024-07-20T10:46:42Z) - SmartOracle: Generating Smart Contract Oracle via Fine-Grained Invariant Detection [27.4175374482506]
SmartOracleは、脆弱性検出のためのアプリケーション固有のオラクルとして、きめ細かな不変量を自動生成する動的不変検出器である。
過去のトランザクションから、SmartOracleはパターンベースの検出と高度な推論を使用して包括的なプロパティを構築する。
SmartOracleは、31の脆弱なコントラクトを含む許容精度96%で、466の異常トランザクションを正常に検出した。
論文 参考訳(メタデータ) (2024-06-14T14:09:20Z) - Static Application Security Testing (SAST) Tools for Smart Contracts: How Far Are We? [14.974832502863526]
近年,スマートコントラクトセキュリティの重要性が高まっている。
この問題に対処するため、スマートコントラクトの脆弱性を検出するために、多数の静的アプリケーションセキュリティテスト(SAST)ツールが提案されている。
本稿では,スマートコントラクトに対する45種類の脆弱性を含む,最新のきめ細かな分類法を提案する。
論文 参考訳(メタデータ) (2024-04-28T13:40:18Z) - Vulnerability Scanners for Ethereum Smart Contracts: A Large-Scale Study [44.25093111430751]
2023年だけでも、そのような脆弱性は数十億ドルを超える巨額の損失をもたらした。
スマートコントラクトの脆弱性を検出し、軽減するために、さまざまなツールが開発されている。
本研究では,既存のセキュリティスキャナの有効性と,現在も継続している脆弱性とのギャップについて検討する。
論文 参考訳(メタデータ) (2023-12-27T11:26:26Z) - Token-Level Adversarial Prompt Detection Based on Perplexity Measures
and Contextual Information [67.78183175605761]
大規模言語モデルは、敵の迅速な攻撃に影響を受けやすい。
この脆弱性は、LLMの堅牢性と信頼性に関する重要な懸念を浮き彫りにしている。
トークンレベルで敵のプロンプトを検出するための新しい手法を提案する。
論文 参考訳(メタデータ) (2023-11-20T03:17:21Z) - Survey on Quality Assurance of Smart Contracts [14.34073444030935]
スマートコントラクトの採用の増加に伴い、セキュリティの確保が重要な問題となっている。
スマートコントラクトの品質保証について,脆弱性,攻撃,防御,ツールサポートについて,系統的に概説する。
スマートコントラクトを効果的に保護するために、さまざまな脆弱性検出ツールを評価し、その有効性を比較するためにラベル付きデータセットを作成しました。
論文 参考訳(メタデータ) (2023-11-01T03:36:24Z) - Enhancing Smart Contract Security Analysis with Execution Property Graphs [48.31617821205042]
ランタイム仮想マシン用に特別に設計された動的解析フレームワークであるClueを紹介する。
Clueは契約実行中に重要な情報をキャプチャし、新しいグラフベースの表現であるExecution Property Graphを使用する。
評価結果から, クリューの真正率, 偽正率の低い優れた性能が, 最先端のツールよりも優れていた。
論文 参考訳(メタデータ) (2023-05-23T13:16:42Z) - Combining Graph Neural Networks with Expert Knowledge for Smart Contract
Vulnerability Detection [37.7763374870026]
既存の契約のセキュリティ分析の取り組みは、労働集約的でスケーリング不能な専門家によって定義された厳格なルールに依存している。
本稿では,正規化グラフからグラフ特徴を抽出する新たな時間的メッセージ伝達ネットワークを提案する。
論文 参考訳(メタデータ) (2021-07-24T13:16:30Z) - Exploring Robustness of Unsupervised Domain Adaptation in Semantic
Segmentation [74.05906222376608]
クリーンな画像とそれらの逆の例との一致を、出力空間における対照的な損失によって最大化する、逆向きの自己スーパービジョンUDA(ASSUDA)を提案する。
i) セマンティックセグメンテーションにおけるUDA手法のロバスト性は未解明のままであり, (ii) 一般的に自己スーパービジョン(回転やジグソーなど) は分類や認識などのイメージタスクに有効であるが, セグメンテーションタスクの識別的表現を学習する重要な監視信号の提供には失敗している。
論文 参考訳(メタデータ) (2021-05-23T01:50:44Z) - ESCORT: Ethereum Smart COntRacTs Vulnerability Detection using Deep
Neural Network and Transfer Learning [80.85273827468063]
既存の機械学習ベースの脆弱性検出方法は制限され、スマートコントラクトが脆弱かどうかのみ検査される。
スマートコントラクトのための初のDeep Neural Network(DNN)ベースの脆弱性検出フレームワークであるESCORTを提案する。
ESCORTは6種類の脆弱性に対して平均95%のF1スコアを達成し,検出時間は契約あたり0.02秒であることを示す。
論文 参考訳(メタデータ) (2021-03-23T15:04:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。