論文の概要: SmartOracle: Generating Smart Contract Oracle via Fine-Grained Invariant Detection
- arxiv url: http://arxiv.org/abs/2406.10054v1
- Date: Fri, 14 Jun 2024 14:09:20 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-17 13:25:54.927053
- Title: SmartOracle: Generating Smart Contract Oracle via Fine-Grained Invariant Detection
- Title(参考訳): SmartOracle: ファイングラインド不変検出によるスマートコントラクトOracleの生成
- Authors: Jianzhong Su, Jiachi Chen, Zhiyuan Fang, Xingwei Lin, Yutian Tang, Zibin Zheng,
- Abstract要約: SmartOracleは、脆弱性検出のためのアプリケーション固有のオラクルとして、きめ細かな不変量を自動生成する動的不変検出器である。
過去のトランザクションから、SmartOracleはパターンベースの検出と高度な推論を使用して包括的なプロパティを構築する。
SmartOracleは、31の脆弱なコントラクトを含む許容精度96%で、466の異常トランザクションを正常に検出した。
- 参考スコア(独自算出の注目度): 27.4175374482506
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: As decentralized applications (DApps) proliferate, the increased complexity and usage of smart contracts have heightened their susceptibility to security incidents and financial losses. Although various vulnerability detection tools have been developed to mitigate these issues, they often suffer poor performance in detecting vulnerabilities, as they either rely on simplistic and general-purpose oracles that may be inadequate for vulnerability detection, or require user-specified oracles, which are labor-intensive to create. In this paper, we introduce SmartOracle, a dynamic invariant detector that automatically generates fine-grained invariants as application-specific oracles for vulnerability detection. From historical transactions, SmartOracle uses pattern-based detection and advanced inference to construct comprehensive properties, and mines multi-layer likely invariants to accommodate the complicated contract functionalities. After that, SmartOracle identifies smart contract vulnerabilities by hunting the violated invariants in new transactions. In the field of invariant detection, SmartOracle detects 50% more ERC20 invariants than existing dynamic invariant detection and achieves 96% precision rate. Furthermore, we build a dataset that contains vulnerable contracts from real-world security incidents. SmartOracle successfully detects 466 abnormal transactions with an acceptable precision rate 96%, involving 31 vulnerable contracts. The experimental results demonstrate its effectiveness in detecting smart contract vulnerabilities, especially those related to complicated contract functionalities.
- Abstract(参考訳): 分散アプリケーション(DApps)の普及に伴い、スマートコントラクトの複雑さと使用量の増加により、セキュリティインシデントや財務的損失に対する感受性が向上した。
これらの問題を緩和するために様々な脆弱性検出ツールが開発されているが、脆弱性検出に不適な単純で汎用的なオークルに依存するか、あるいは作成に労力を要するユーザ特定オークルを必要とするため、脆弱性検出のパフォーマンスが低下することが多い。
本稿では,脆弱性検出のためのアプリケーション固有のオラクルとして,きめ細かな不変量を自動生成する動的不変検出器SmartOracleを紹介する。
歴史的トランザクションから、SmartOracleはパターンベースの検出と高度な推論を使用して包括的なプロパティを構築し、複雑なコントラクト機能に対応するため、多層の可能性のある不変性をマイニングする。
その後、SmartOracleは、新しいトランザクションで違反した不変品を検索することで、スマートコントラクトの脆弱性を特定する。
不変検出の分野では、SmartOracleは既存の動的不変検出よりも50%多いERC20不変量を検知し、96%の精度を達成する。
さらに、現実のセキュリティインシデントからの脆弱なコントラクトを含むデータセットを構築します。
SmartOracleは、31の脆弱なコントラクトを含む許容精度96%で、466の異常トランザクションを正常に検出した。
実験結果から,スマートコントラクトの脆弱性,特に複雑なコントラクト機能に関連する脆弱性の検出の有効性が示された。
関連論文リスト
- LLM-SmartAudit: Advanced Smart Contract Vulnerability Detection [3.1409266162146467]
本稿では,スマートコントラクトの脆弱性を検出し解析する新しいフレームワークであるLLM-SmartAuditを紹介する。
LLM-SmartAuditは、マルチエージェントの会話アプローチを用いて、監査プロセスを強化するために、特殊なエージェントとの協調システムを採用している。
私たちのフレームワークは、従来のツールがこれまで見落としていた複雑なロジックの脆弱性を検出することができます。
論文 参考訳(メタデータ) (2024-10-12T06:24:21Z) - Jailbreaking as a Reward Misspecification Problem [80.52431374743998]
本稿では,この脆弱性をアライメントプロセス中に不特定性に対処する新たな視点を提案する。
本稿では,報酬の相違の程度を定量化し,その有効性を実証する指標ReGapを紹介する。
ReMissは、報酬ミスの空間で敵のプロンプトを生成する自動レッドチームリングシステムである。
論文 参考訳(メタデータ) (2024-06-20T15:12:27Z) - Static Application Security Testing (SAST) Tools for Smart Contracts: How Far Are We? [14.974832502863526]
近年,スマートコントラクトセキュリティの重要性が高まっている。
この問題に対処するため、スマートコントラクトの脆弱性を検出するために、多数の静的アプリケーションセキュリティテスト(SAST)ツールが提案されている。
本稿では,スマートコントラクトに対する45種類の脆弱性を含む,最新のきめ細かな分類法を提案する。
論文 参考訳(メタデータ) (2024-04-28T13:40:18Z) - Demystifying Invariant Effectiveness for Securing Smart Contracts [8.848934430494088]
本稿では,上位監査会社やセキュリティ専門家が支持する,著名なプロトコルに展開する8つのカテゴリの23種類の不変量について検討した。
我々は、その履歴トランザクションデータに基づいて、所定の契約用にカスタマイズされた新しい不変量を動的に生成するツールTrace2Invを開発した。
以上の結果から,最も有効な不変ガード単独で,ガスオーバーヘッドを最小限に抑えた27種のうち18種をブロックできることが判明した。
論文 参考訳(メタデータ) (2024-04-22T20:59:09Z) - Efficiently Detecting Reentrancy Vulnerabilities in Complex Smart Contracts [35.26195628798847]
既存の脆弱性検出ツールは、複雑なコントラクトにおける脆弱性の効率性や検出成功率の面では不十分である。
SliSEは、複雑なコントラクトに対するReentrancy脆弱性を検出する堅牢で効率的な方法を提供する。
論文 参考訳(メタデータ) (2024-03-17T16:08:30Z) - Oracle Character Recognition using Unsupervised Discriminative
Consistency Network [65.64172835624206]
オラクル文字認識(OrCR)のための新しい教師なしドメイン適応手法を提案する。
擬似ラベルを利用して意味情報を適応と制約強化の整合性に組み込む。
提案手法は,Oracle-241データセットの最先端結果を実現し,最近提案した構造・テクスチャ分離ネットワークを15.1%向上させる。
論文 参考訳(メタデータ) (2023-12-11T02:52:27Z) - Blockchain Large Language Models [65.7726590159576]
本稿では,異常なブロックチェーントランザクションを検出するための動的,リアルタイムなアプローチを提案する。
提案するツールであるBlockGPTは、ブロックチェーンアクティビティのトレース表現を生成し、大規模な言語モデルをスクラッチからトレーニングして、リアルタイム侵入検出システムとして機能させる。
論文 参考訳(メタデータ) (2023-04-25T11:56:18Z) - An Automated Vulnerability Detection Framework for Smart Contracts [18.758795474791427]
ブロックチェーン上のスマートコントラクトの脆弱性を自動的に検出するフレームワークを提案する。
具体的には、まず、スマートコントラクトのバイトコードから新しい特徴ベクトル生成技術を利用する。
次に、収集したベクトルを新しいメトリック学習ベースディープニューラルネットワーク(DNN)に入力し、検出結果を得る。
論文 参考訳(メタデータ) (2023-01-20T23:16:04Z) - Generalization of Neural Combinatorial Solvers Through the Lens of
Adversarial Robustness [68.97830259849086]
ほとんどのデータセットは単純なサブプロブレムのみをキャプチャし、おそらくは突発的な特徴に悩まされる。
本研究では, 局所的な一般化特性である対向ロバスト性について検討し, 厳密でモデル固有な例と突発的な特徴を明らかにする。
他のアプリケーションとは異なり、摂動モデルは知覚できないという主観的な概念に基づいて設計されているため、摂動モデルは効率的かつ健全である。
驚くべきことに、そのような摂動によって、十分に表現力のあるニューラルソルバは、教師あり学習で共通する正確さと悪質さのトレードオフの限界に悩まされない。
論文 参考訳(メタデータ) (2021-10-21T07:28:11Z) - ESCORT: Ethereum Smart COntRacTs Vulnerability Detection using Deep
Neural Network and Transfer Learning [80.85273827468063]
既存の機械学習ベースの脆弱性検出方法は制限され、スマートコントラクトが脆弱かどうかのみ検査される。
スマートコントラクトのための初のDeep Neural Network(DNN)ベースの脆弱性検出フレームワークであるESCORTを提案する。
ESCORTは6種類の脆弱性に対して平均95%のF1スコアを達成し,検出時間は契約あたり0.02秒であることを示す。
論文 参考訳(メタデータ) (2021-03-23T15:04:44Z) - Anomaly Detection Based on Selection and Weighting in Latent Space [73.01328671569759]
SWADと呼ばれる新しい選択および重み付けに基づく異常検出フレームワークを提案する。
ベンチマークと実世界のデータセットによる実験は、SWADの有効性と優位性を示している。
論文 参考訳(メタデータ) (2021-03-08T10:56:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。