論文の概要: A learning-based solution approach to the application placement problem in mobile edge computing under uncertainty
- arxiv url: http://arxiv.org/abs/2403.11259v2
- Date: Sat, 23 Mar 2024 08:27:02 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-26 23:01:39.699470
- Title: A learning-based solution approach to the application placement problem in mobile edge computing under uncertainty
- Title(参考訳): 不確実性を考慮したモバイルエッジコンピューティングにおけるアプリケーション配置問題に対する学習型解法
- Authors: Taha-Hossein Hejazi, Zahra Ghadimkhani, Arezoo Borji,
- Abstract要約: モバイルエッジコンピューティングサーバにアプリケーションを配置することは、多くのサーバ、ユーザ、そして彼らの要求にまつわる複雑な課題を示す。
これらのアプローチの1つは機械学習であり、エッジサーバにおけるアプリケーションの配置に最適なソリューションをエミュレートする。
本研究の目的は,モバイルエッジコンピューティングにおける高次元問題や,不確実性を伴うシナリオに対処するための,より効率的なアプローチを提供することである。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Placing applications in mobile edge computing servers presents a complex challenge involving many servers, users, and their requests. Existing algorithms take a long time to solve high-dimensional problems with significant uncertainty scenarios. Therefore, an efficient approach is required to maximize the quality of service while considering all technical constraints. One of these approaches is machine learning, which emulates optimal solutions for application placement in edge servers. Machine learning models are expected to learn how to allocate user requests to servers based on the spatial positions of users and servers. In this study, the problem is formulated as a two-stage stochastic programming. A sufficient amount of training records is generated by varying parameters such as user locations, their request rates, and solving the optimization model. Then, based on the distance features of each user from the available servers and their request rates, machine learning models generate decision variables for the first stage of the stochastic optimization model, which is the user-to-server request allocation, and are employed as independent decision agents that reliably mimic the optimization model. Support Vector Machines (SVM) and Multi-layer Perceptron (MLP) are used in this research to achieve practical decisions from the stochastic optimization models. The performance of each model has shown an execution effectiveness of over 80%. This research aims to provide a more efficient approach for tackling high-dimensional problems and scenarios with uncertainties in mobile edge computing by leveraging machine learning models for optimal decision-making in request allocation to edge servers. These results suggest that machine-learning models can significantly improve solution times compared to conventional approaches.
- Abstract(参考訳): モバイルエッジコンピューティングサーバにアプリケーションを配置することは、多くのサーバ、ユーザ、そして彼らの要求にまつわる複雑な課題を示す。
既存のアルゴリズムは、重大な不確実性のあるシナリオで高次元の問題を解決するのに長い時間がかかる。
したがって、すべての技術的制約を考慮しつつ、サービス品質を最大化するための効率的なアプローチが必要である。
これらのアプローチの1つは機械学習であり、エッジサーバにおけるアプリケーションの配置に最適なソリューションをエミュレートする。
機械学習モデルは、ユーザとサーバの空間的位置に基づいて、ユーザリクエストをサーバに割り当てる方法を学ぶことが期待される。
本研究では,この問題を2段階確率計画法として定式化する。
十分な量のトレーニングレコードは、ユーザ位置、要求率、最適化モデルの解決など、さまざまなパラメータによって生成される。
そして、利用可能なサーバから各ユーザの距離の特徴と要求率に基づいて、機械学習モデルは、ユーザ間要求割り当てである確率最適化モデルの第一段階における決定変数を生成し、その最適化モデルを確実に模倣する独立した決定エージェントとして使用される。
本研究では,SVM(Support Vector Machines)とMLP(Multi-layer Perceptron)を用いて,確率的最適化モデルから現実的な決定を行う。
各モデルの性能は80%以上の実行効率を示した。
本研究の目的は,エッジサーバへの要求割当において,機械学習モデルを利用して最適な意思決定を行うことにより,モバイルエッジコンピューティングにおける高次元問題やシナリオに不確実性を持たせるための,より効率的なアプローチを提供することである。
これらの結果から,機械学習モデルは従来の手法に比べて解時間を大幅に改善できる可能性が示唆された。
関連論文リスト
- Controllable Unlearning for Image-to-Image Generative Models via $\varepsilon$-Constrained Optimization [12.627103884294476]
画像合成モデル(I2I)における機械学習問題について検討する。
従来の研究は主に、単独のソリューションを提供する単一目的最適化問題として扱われていた。
本稿では、制御係数$varepsilon$を用いてトレードオフを制御する制御可能なアンラーニングフレームワークを提案する。
論文 参考訳(メタデータ) (2024-08-03T07:04:55Z) - Machine Learning Insides OptVerse AI Solver: Design Principles and
Applications [74.67495900436728]
本稿では,Huawei CloudのOpsVerse AIソルバに機械学習(ML)技術を統合するための総合的研究について述べる。
本稿では,実世界の多面構造を反映した生成モデルを用いて,複雑なSATインスタンスとMILPインスタンスを生成する手法を紹介する。
本稿では,解解器性能を著しく向上させる,最先端パラメータチューニングアルゴリズムの導入について詳述する。
論文 参考訳(メタデータ) (2024-01-11T15:02:15Z) - Predict-Then-Optimize by Proxy: Learning Joint Models of Prediction and
Optimization [59.386153202037086]
Predict-Then-フレームワークは、機械学習モデルを使用して、最適化問題の未知のパラメータを、解決前の機能から予測する。
このアプローチは非効率であり、最適化ステップを通じてバックプロパゲーションのための手作りの、問題固有のルールを必要とする。
本稿では,予測モデルを用いて観測可能な特徴から最適解を直接学習する手法を提案する。
論文 参考訳(メタデータ) (2023-11-22T01:32:06Z) - A Machine Learning Approach to Two-Stage Adaptive Robust Optimization [6.943816076962257]
本稿では,2段階線形適応ロバスト最適化問題の解法として,機械学習に基づくアプローチを提案する。
私たちは、最適な今と現在の決定、最適な今と現在の決定に関連する最悪のシナリオ、そして最適な待ちと見る決定をエンコードします。
私たちは、現在と現在の決定のための高品質な戦略、最適な今と現在の決定に関連する最悪のシナリオ、待機と見る決定を予測できる機械学習モデルをトレーニングします。
論文 参考訳(メタデータ) (2023-07-23T19:23:06Z) - Optimizing fairness tradeoffs in machine learning with multiobjective
meta-models [0.913755431537592]
複数のコスト関数を持つ重み付き分類問題として、公平な機械学習タスクを定義するフレキシブルなフレームワークを提案する。
我々は、与えられた学習者のモデルトレーニングで使用されるサンプル重量を定義するために多目的最適化を使用し、重みを適応させ、公平性と精度の複数の指標を最適化する。
実世界の一連の問題において、このアプローチは、好ましいエラー/フェアネストレードオフを持つ解集合を見つけることによって、現在の最先端の手法よりも優れている。
論文 参考訳(メタデータ) (2023-04-21T13:42:49Z) - Learning to Optimize Permutation Flow Shop Scheduling via Graph-based
Imitation Learning [70.65666982566655]
置換フローショップスケジューリング(PFSS)は製造業で広く使われている。
我々は,より安定かつ正確に収束を加速する専門家主導の模倣学習を通じてモデルを訓練することを提案する。
我々のモデルのネットワークパラメータはわずか37%に減少し、エキスパートソリューションに対する我々のモデルの解のギャップは平均6.8%から1.3%に減少する。
論文 参考訳(メタデータ) (2022-10-31T09:46:26Z) - Optimal Event Monitoring through Internet Mashup over Multivariate Time
Series [77.34726150561087]
このフレームワークは、モデル定義、クエリ、パラメータ学習、モデル評価、データ監視、決定レコメンデーション、Webポータルのサービスをサポートする。
さらに、MTSAデータモデルとクエリ言語を拡張して、学習、監視、レコメンデーションのサービスにおいて、この種の問題をサポートする。
論文 参考訳(メタデータ) (2022-10-18T16:56:17Z) - How to effectively use machine learning models to predict the solutions
for optimization problems: lessons from loss function [0.0]
本稿では,高度な機械学習手法を用いた制約最適化問題に対する良質な解の予測を目的とする。
citeabbasi 2020predictingの仕事を拡張し、大規模最適化モデルのソリューションを予測するために機械学習モデルを使用する。
論文 参考訳(メタデータ) (2021-05-14T02:14:00Z) - Modeling the Second Player in Distributionally Robust Optimization [90.25995710696425]
我々は、最悪のケース分布を特徴付けるために神経生成モデルを使うことを議論する。
このアプローチは多くの実装と最適化の課題をもたらします。
提案されたアプローチは、同等のベースラインよりも堅牢なモデルを生み出す。
論文 参考訳(メタデータ) (2021-03-18T14:26:26Z) - MLComp: A Methodology for Machine Learning-based Performance Estimation
and Adaptive Selection of Pareto-Optimal Compiler Optimization Sequences [10.200899224740871]
組込みソフトウェア最適化のための新しい強化学習型ポリシー手法を提案する。
異なる機械学習モデルが自動的にテストされ、最適なものを選択する。
また、ターゲットとするプラットフォームやアプリケーションドメインに対して、フレームワークを効率的にトレーニングできることも示しています。
論文 参考訳(メタデータ) (2020-12-09T19:13:39Z) - Automatically Learning Compact Quality-aware Surrogates for Optimization
Problems [55.94450542785096]
未知パラメータで最適化問題を解くには、未知パラメータの値を予測し、これらの値を用いて問題を解くための予測モデルを学ぶ必要がある。
最近の研究によると、複雑なトレーニングモデルパイプラインのレイヤーとして最適化の問題を含めると、観測されていない意思決定の繰り返しを予測することになる。
我々は,大規模最適化問題の低次元サロゲートモデルを学習することにより,解の質を向上させることができることを示す。
論文 参考訳(メタデータ) (2020-06-18T19:11:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。