論文の概要: StainDiffuser: MultiTask Dual Diffusion Model for Virtual Staining
- arxiv url: http://arxiv.org/abs/2403.11340v1
- Date: Sun, 17 Mar 2024 20:47:52 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-19 17:17:15.430760
- Title: StainDiffuser: MultiTask Dual Diffusion Model for Virtual Staining
- Title(参考訳): StainDiffuser:仮想染色のためのマルチタスクデュアル拡散モデル
- Authors: Tushar Kataria, Beatrice Knudsen, Shireen Y. Elhabian,
- Abstract要約: ヘマトキシリンとエオシン(H&E)染色は、疾患の診断や腫瘍再発追跡に最もよく用いられる。
ディープラーニングモデルは、画像から画像への変換(I2I)を重要な研究領域とし、高価な物理的染色プロセスの必要性を減らす。
StainDiffuserは、仮想染色のための新しい二重拡散アーキテクチャであり、限られたトレーニング予算の下で収束する。
- 参考スコア(独自算出の注目度): 1.9029890402585894
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Hematoxylin and Eosin (H&E) staining is the most commonly used for disease diagnosis and tumor recurrence tracking. Hematoxylin excels at highlighting nuclei, whereas eosin stains the cytoplasm. However, H&E stain lacks details for differentiating different types of cells relevant to identifying the grade of the disease or response to specific treatment variations. Pathologists require special immunohistochemical (IHC) stains that highlight different cell types. These stains help in accurately identifying different regions of disease growth and their interactions with the cell's microenvironment. The advent of deep learning models has made Image-to-Image (I2I) translation a key research area, reducing the need for expensive physical staining processes. Pix2Pix and CycleGAN are still the most commonly used methods for virtual staining applications. However, both suffer from hallucinations or staining irregularities when H&E stain has less discriminate information about the underlying cells IHC needs to highlight (e.g.,CD3 lymphocytes). Diffusion models are currently the state-of-the-art models for image generation and conditional generation tasks. However, they require extensive and diverse datasets (millions of samples) to converge, which is less feasible for virtual staining applications.Inspired by the success of multitask deep learning models for limited dataset size, we propose StainDiffuser, a novel multitask dual diffusion architecture for virtual staining that converges under a limited training budget. StainDiffuser trains two diffusion processes simultaneously: (a) generation of cell-specific IHC stain from H&E and (b) H&E-based cell segmentation using coarse segmentation only during training. Our results show that StainDiffuser produces high-quality results for easier (CK8/18,epithelial marker) and difficult stains(CD3, Lymphocytes).
- Abstract(参考訳): ヘマトキシリンとエオシン(H&E)染色は、疾患の診断や腫瘍再発追跡に最もよく用いられる。
ヘマトキシリンは核の強調に優れ、エオシンは細胞質を染色する。
しかし、H&E染色は、疾患の分類や特定の治療のバリエーションに対する反応に関連する異なる種類の細胞を識別するための詳細を欠いている。
病理学者は、異なる細胞タイプを強調する特別な免疫組織化学(IHC)染色を必要とする。
これらの染色は、疾患の成長の異なる領域と、細胞の微小環境との相互作用を正確に識別するのに役立つ。
ディープラーニングモデルの出現により、画像から画像への変換(I2I)が重要な研究領域となり、高価な物理染色プロセスの必要性が軽減された。
Pix2PixとCycleGANはいまだに仮想染色アプリケーションでよく使われている方法である。
しかし、H&E染色がIHCが強調する必要がある細胞(例えばCD3リンパ球)についての識別情報の少ない場合、どちらも幻覚や染色異常に悩まされる。
拡散モデルは、現在、画像生成および条件生成タスクのための最先端モデルである。
しかし、仮想染色アプリケーションでは実現不可能な、広範囲で多様なデータセット(数百万のサンプル)を収束させる必要があり、データセットサイズが制限されたマルチタスク深層学習モデルの成功に触発されて、仮想染色のための新しいマルチタスク二重拡散アーキテクチャであるStainDiffuserを提案する。
StainDiffuser は2つの拡散過程を同時に訓練する。
(a)H&Eから細胞特異的IHC染色の生成
(b)訓練中のみ粗いセグメンテーションを用いたH&E細胞セグメンテーション。
以上の結果から, StainDiffuser は, より容易な (CK8/18, 上皮マーカー) および難染色 (CD3, リンパ球) に対して, 高品質な結果が得られた。
関連論文リスト
- FairSkin: Fair Diffusion for Skin Disease Image Generation [54.29840149709033]
拡散モデル (DM) は, 合成医用画像の生成において主要な手法となっているが, 臨界二倍偏差に悩まされている。
このようなバイアスを3段階のリサンプリング機構によって緩和する新しいDMフレームワークであるFairSkinを提案する。
本手法は, 画像の多様性と品質を著しく向上させ, 臨床環境における皮膚疾患の検出精度の向上に寄与する。
論文 参考訳(メタデータ) (2024-10-29T21:37:03Z) - VIMs: Virtual Immunohistochemistry Multiplex staining via Text-to-Stain Diffusion Trained on Uniplex Stains [0.9920087186610302]
IHC染色は、複雑な診断問題を解決し、患者の治療決定を導くために、病理学の実践において不可欠である。
小さな生検では、しばしば複数の染色のための十分な組織が欠如し、その後の分子試験のための材料が保存される。
VIMsはこのニーズに対処する最初のモデルであり、仮想IHC多重化のために大きな視覚言語による単一ステップ拡散モデルを活用する。
論文 参考訳(メタデータ) (2024-07-26T22:23:45Z) - Structural Cycle GAN for Virtual Immunohistochemistry Staining of Gland
Markers in the Colon [1.741980945827445]
ヘマトキシリンとエオシン(H&E)染色は疾患解析、診断、グレーディングにおいて最も頻繁に用いられる染色の一つである。
病理学者は、特定の構造や細胞を分析するために異種化学染色(IHC)を必要とする。
ヘマトキシリンとエオシン(H&E)染色は疾患解析、診断、グレーディングにおいて最も頻繁に用いられる染色の一つである。
論文 参考訳(メタデータ) (2023-08-25T05:24:23Z) - A Laplacian Pyramid Based Generative H&E Stain Augmentation Network [5.841841666625825]
Generative Stain Augmentation Network (G-SAN)は、GANベースのフレームワークで、シミュレーションされた染色のバリエーションでセルイメージのコレクションを増強する。
G-SAN強化トレーニングデータを使用することで、平均15.7%のF1スコアの改善、7.3%の汎光学品質向上が達成される。
論文 参考訳(メタデータ) (2023-05-23T17:43:18Z) - Unsupervised Deep Digital Staining For Microscopic Cell Images Via
Knowledge Distillation [46.006296303296544]
大規模にステンド/アンステンディングされたセルイメージペアを実際に取得することは困難である。
本稿では,セル画像のデジタル染色のための新しい教師なしディープラーニングフレームワークを提案する。
提案手法は, より正確な位置と形状の染色画像を生成することができることを示す。
論文 参考訳(メタデータ) (2023-03-03T16:26:38Z) - Stain-invariant self supervised learning for histopathology image
analysis [74.98663573628743]
乳がんのヘマトキシリンおよびエオシン染色像におけるいくつかの分類課題に対する自己監督アルゴリズムを提案する。
本手法は,いくつかの乳がんデータセット上での最先端のパフォーマンスを実現する。
論文 参考訳(メタデータ) (2022-11-14T18:16:36Z) - Region-guided CycleGANs for Stain Transfer in Whole Slide Images [6.704730171977661]
そこで本研究では,CycleGANを関心差別の領域として拡張する手法を提案する。
我々は,IHC染色が転移細胞に対して実験的に発生する信号を提供するスライド画像全体に対するユースケースを提案する。
論文 参考訳(メタデータ) (2022-08-26T19:12:49Z) - Virtual stain transfer in histology via cascaded deep neural networks [2.309018557701645]
ケースドディープニューラルネットワーク(C-DNN)による仮想染色伝達フレームワークの実証を行った。
C-DNNは、入力として1つの染色タイプのみを取り込んで別の染色タイプの画像をデジタル出力する単一のニューラルネットワーク構造とは異なり、まず仮想染色を使用して、自己蛍光顕微鏡画像をH&Eに変換する。
我々は,H&E染色組織像を仮想PAS( periodic acid-Schiff)染色に変換することに成功した。
論文 参考訳(メタデータ) (2022-07-14T00:43:18Z) - RandStainNA: Learning Stain-Agnostic Features from Histology Slides by
Bridging Stain Augmentation and Normalization [45.81689497433507]
ステン正規化(SN)とステン強化(SA)という2つの提案が一般化誤差を低減するために注目されている。
この問題に対処するため、SNとSAを新しいRandStainNAスキームで統一する。
RandStainNAは、ステンレスに依存しないディープラーニングモデルをトレーニングするために、実行可能な範囲で可変ステンスタイルを制約する。
論文 参考訳(メタデータ) (2022-06-25T16:43:59Z) - Lymphocyte Classification in Hyperspectral Images of Ovarian Cancer
Tissue Biopsy Samples [94.37521840642141]
生検コアのハイパースペクトル画像に白血球画素を分割する機械学習パイプラインを提案する。
これらの細胞は臨床的に診断に重要であるが、いくつかの先行研究は正確なピクセルラベルを得るのが困難であるため、それらを組み込むのに苦労している。
論文 参考訳(メタデータ) (2022-03-23T00:58:27Z) - Texture Characterization of Histopathologic Images Using Ecological
Diversity Measures and Discrete Wavelet Transform [82.53597363161228]
本稿では,病理組織像間でテクスチャを特徴付ける手法を提案する。
2つのHIデータセットに有望な精度で、そのような画像の固有特性を定量化することが可能である。
論文 参考訳(メタデータ) (2022-02-27T02:19:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。