AI-enabled prediction of NMR spectroscopy: Deducing 2-D NMR of carbohydrate
- URL: http://arxiv.org/abs/2403.11353v3
- Date: Thu, 30 May 2024 23:18:46 GMT
- Title: AI-enabled prediction of NMR spectroscopy: Deducing 2-D NMR of carbohydrate
- Authors: Yunrui Li, Hao Xu, Pengyu Hong,
- Abstract summary: AI-driven NMR prediction, powered by advanced machine learning and predictive algorithms, has fundamentally reshaped the interpretation of NMR spectra.
Our methodology is versatile, catering to both monosaccharide-derived small molecules, oligosaccharides and large polysaccharides.
Given the complex nature involved in the generation of 2D NMRs, our objective is to fully leverage the potential of AI to enhance the precision, efficiency, and comprehensibility of NMR spectral analysis.
- Score: 7.470166291890153
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In the dynamic field of nuclear magnetic resonance (NMR) spectroscopy, artificial intelligence (AI) has ushered in a transformative era for molecular studies. AI-driven NMR prediction, powered by advanced machine learning and predictive algorithms, has fundamentally reshaped the interpretation of NMR spectra. This innovation empowers us to forecast spectral patterns swiftly and accurately across a broad spectrum of molecular structures. Furthermore, the advent of generative modeling offers a groundbreaking approach, making it feasible to make informed prediction of 2D NMR from chemical language (such as SMILES, IUPAC Name). Our method mirrors the multifaceted nature of NMR imaging experiments, producing 2D NMRs for the same molecule based on different conditions, such as solvents and temperatures. Our methodology is versatile, catering to both monosaccharide-derived small molecules, oligosaccharides and large polysaccharides. A deeper exploration of the discrepancies in these predictions can provide insights into the influence of elements such as functional groups, repeating units, and the modification of the monomers on the outcomes. Given the complex nature involved in the generation of 2D NMRs, our objective is to fully leverage the potential of AI to enhance the precision, efficiency, and comprehensibility of NMR spectral analysis, ultimately advancing both the field of NMR spectroscopy and the broader realm of molecular research.
Related papers
- Unraveling Molecular Structure: A Multimodal Spectroscopic Dataset for Chemistry [0.1747623282473278]
This dataset comprises simulated $1$H-NMR, $13$C-NMR, HSQC-NMR, Infrared, and Mass spectra for 790k molecules extracted from chemical reactions in patent data.
We provide benchmarks for evaluating single-modality tasks such as structure elucidation, predicting the spectra for a target molecule, and functional group predictions.
arXiv Detail & Related papers (2024-07-04T12:52:48Z) - Carbohydrate NMR chemical shift predictions using E(3) equivariant graph
neural networks [0.0]
This work introduces a novel approach that leverages E(3) equivariant graph neural networks to predict carbohydrate NMR spectra.
Notably, our model achieves a substantial reduction in mean absolute error, up to threefold, compared to traditional models.
The implications are far-reaching and go beyond an advanced understanding of carbohydrate structures and spectral interpretation.
arXiv Detail & Related papers (2023-11-21T15:01:14Z) - Sensing of magnetic field effects in radical-pair reactions using a
quantum sensor [50.591267188664666]
Magnetic field effects (MFE) in certain chemical reactions have been well established in the last five decades.
We employ elaborate and realistic models of radical-pairs, considering its coupling to the local spin environment and the sensor.
For two model systems, we derive signals of MFE detectable even in the weak coupling regime between radical-pair and NV quantum sensor.
arXiv Detail & Related papers (2022-09-28T12:56:15Z) - Quantum Heterodyne Sensing of Nuclear Spins via Double Resonance [0.0]
A heterodyne approach is widely used to overcome the electron spin lifetime limit in spectral resolution.
This work paves the way towards high field nanoscale heterodyne NMR protocols with NV centres.
arXiv Detail & Related papers (2022-05-20T13:48:59Z) - Nanometer-Scale Nuclear Magnetic Resonance Diffraction with Sub-\AA
ngstrom Precision [0.0]
We present a new approach to nanoMRI utilizing nuclear magnetic resonance diffraction (NMRd)
The realization of NMRd on the atomic scale would create a powerful new methodology for materials characterization utilizing the spectroscopic capabilities of NMR.
arXiv Detail & Related papers (2022-04-01T05:53:52Z) - Unsupervised Spectral Unmixing For Telluric Correction Using A Neural
Network Autoencoder [58.720142291102135]
We present a neural network autoencoder approach for extracting a telluric transmission spectrum from a large set of high-precision observed solar spectra from the HARPS-N radial velocity spectrograph.
arXiv Detail & Related papers (2021-11-17T12:54:48Z) - Controlled coherent dynamics of [VO(TPP)], a prototype molecular nuclear
qudit with an electronic ancilla [50.002949299918136]
We show that [VO(TPP)] (vanadyl tetraphenylporphyrinate) is a promising system suitable to implement quantum computation algorithms.
It embeds an electronic spin 1/2 coupled through hyperfine interaction to a nuclear spin 7/2, both characterized by remarkable coherence.
arXiv Detail & Related papers (2021-03-15T21:38:41Z) - Zero- to ultralow-field nuclear magnetic resonance and its applications [11.963366832132495]
ZULF NMR detects nuclear magnetization signals in the sub-microtesla regime.
Spin-exchange relaxation-free atomic magnetometers provide a new generation of sensitive detector for ZULF NMR.
ZULF NMR has recently attracted considerable attention in chemistry, biology, medicine, and tests of fundamental physics.
arXiv Detail & Related papers (2020-11-30T16:13:20Z) - Confidence-guided Lesion Mask-based Simultaneous Synthesis of Anatomic
and Molecular MR Images in Patients with Post-treatment Malignant Gliomas [65.64363834322333]
Confidence Guided SAMR (CG-SAMR) synthesizes data from lesion information to multi-modal anatomic sequences.
module guides the synthesis based on confidence measure about the intermediate results.
experiments on real clinical data demonstrate that the proposed model can perform better than the state-of-theart synthesis methods.
arXiv Detail & Related papers (2020-08-06T20:20:22Z) - Lesion Mask-based Simultaneous Synthesis of Anatomic and MolecularMR
Images using a GAN [59.60954255038335]
The proposed framework consists of a stretch-out up-sampling module, a brain atlas encoder, a segmentation consistency module, and multi-scale label-wise discriminators.
Experiments on real clinical data demonstrate that the proposed model can perform significantly better than the state-of-the-art synthesis methods.
arXiv Detail & Related papers (2020-06-26T02:50:09Z) - Two-Dimensional Single- and Multiple-Quantum Correlation Spectroscopy in
Zero-Field Nuclear Magnetic Resonance [55.41644538483948]
We present single- and multiple-quantum correlation $J$-spectroscopy detected in zero magnetic field using a Rb vapor-cell magnetometer.
At zero field the spectrum of ethanol appears as a mixture of carbon isotopomers, and correlation spectroscopy is useful in separating the two composite spectra.
arXiv Detail & Related papers (2020-04-09T10:02:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.