論文の概要: Can LLM-Augmented autonomous agents cooperate?, An evaluation of their cooperative capabilities through Melting Pot
- arxiv url: http://arxiv.org/abs/2403.11381v1
- Date: Mon, 18 Mar 2024 00:13:43 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-19 17:07:30.152214
- Title: Can LLM-Augmented autonomous agents cooperate?, An evaluation of their cooperative capabilities through Melting Pot
- Title(参考訳): LLM-Augmented autonomous agentは協力できるか? -メルティングポットによる協調能力の評価-
- Authors: Manuel Mosquera, Juan Sebastian Pinzon, Manuel Rios, Yesid Fonseca, Luis Felipe Giraldo, Nicanor Quijano, Ruben Manrique,
- Abstract要約: 本稿では,よく知られたメルチンポット環境を用いた大規模言語モデル拡張自律エージェント(LAA)の協調機能について検討する。
研究のコントリビューションには、LLMにメルティングポットゲームシナリオを適用するための抽象化レイヤが含まれている。
Melting Potの"Commons Harvest"ゲームに関連するメトリクスのセットを用いた協調機能の評価。
- 参考スコア(独自算出の注目度): 2.3732649191362483
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: As the field of AI continues to evolve, a significant dimension of this progression is the development of Large Language Models and their potential to enhance multi-agent artificial intelligence systems. This paper explores the cooperative capabilities of Large Language Model-augmented Autonomous Agents (LAAs) using the well-known Meltin Pot environments along with reference models such as GPT4 and GPT3.5. Preliminary results suggest that while these agents demonstrate a propensity for cooperation, they still struggle with effective collaboration in given environments, emphasizing the need for more robust architectures. The study's contributions include an abstraction layer to adapt Melting Pot game scenarios for LLMs, the implementation of a reusable architecture for LLM-mediated agent development - which includes short and long-term memories and different cognitive modules, and the evaluation of cooperation capabilities using a set of metrics tied to the Melting Pot's "Commons Harvest" game. The paper closes, by discussing the limitations of the current architectural framework and the potential of a new set of modules that fosters better cooperation among LAAs.
- Abstract(参考訳): AIの分野が発展を続けるにつれて、この進歩の重要な側面は、大規模言語モデルの開発と、マルチエージェント人工知能システムを強化する可能性である。
本稿では,GPT4 や GPT3.5 などの参照モデルとともに,よく知られた Meltin Pot 環境を用いた大規模言語モデル拡張自律エージェント (LAA) の協調機能について検討する。
予備的な結果は、これらのエージェントが協調性を示す一方で、より堅牢なアーキテクチャの必要性を強調しながら、与えられた環境で効果的なコラボレーションに苦戦していることを示唆している。
研究のコントリビューションには、LLMのメルティングポットゲームシナリオに適応するための抽象化レイヤ、LLMを介するエージェント開発のための再利用可能なアーキテクチャの実装、短期記憶と異なる認知モジュールを含むこと、メルティングポットの"Commons Harvest"ゲームに関連する一連のメトリクスを使用した協調能力の評価が含まれている。
論文は、現在のアーキテクチャフレームワークの限界と、LAA間のより良い協力を促進する新しいモジュールセットの可能性について議論することで、締めくくっている。
関連論文リスト
- LLM-Agent-UMF: LLM-based Agent Unified Modeling Framework for Seamless Integration of Multi Active/Passive Core-Agents [0.0]
LLM-Agent-UMF(LLM-Agent-UMF)に基づく新しいエージェント統一モデリングフレームワークを提案する。
我々のフレームワークはLLMエージェントの異なるコンポーネントを区別し、LLMとツールを新しい要素であるコアエージェントから分離する。
我々は,13の最先端エージェントに適用し,それらの機能との整合性を実証することによって,我々の枠組みを評価する。
論文 参考訳(メタデータ) (2024-09-17T17:54:17Z) - Efficient Adaptation in Mixed-Motive Environments via Hierarchical Opponent Modeling and Planning [51.52387511006586]
本稿では,HOP(Hierarchical Opponent Modeling and Planning)を提案する。
HOPは階層的に2つのモジュールから構成される: 相手の目標を推論し、対応する目標条件のポリシーを学ぶ、反対モデリングモジュール。
HOPは、さまざまな未確認エージェントと相互作用する際、優れた少数ショット適応能力を示し、セルフプレイのシナリオで優れている。
論文 参考訳(メタデータ) (2024-06-12T08:48:06Z) - Scaling Large-Language-Model-based Multi-Agent Collaboration [75.5241464256688]
大規模言語モデルによるエージェントのパイオニア化は、マルチエージェントコラボレーションの設計パターンを暗示している。
神経スケーリング法則に触発された本研究では,マルチエージェント協調におけるエージェントの増加に類似の原理が適用されるかを検討する。
論文 参考訳(メタデータ) (2024-06-11T11:02:04Z) - CMAT: A Multi-Agent Collaboration Tuning Framework for Enhancing Small Language Models [8.123272461141815]
厳密にキュレートされた高品質データセットに基づいてトレーニングされたTinyAgentモデルを紹介する。
また,言語エージェントの能力向上を目的とした革新的システムであるCMAT(Collaborative Multi-Agent Tuning)フレームワークを提案する。
本研究では,マルチエージェントシステムと環境フィードバック機構を統合した新しいコミュニケーションエージェントフレームワークを提案する。
論文 参考訳(メタデータ) (2024-04-02T06:07:35Z) - Large Multimodal Agents: A Survey [78.81459893884737]
大規模言語モデル(LLM)は、テキストベースのAIエージェントのパワーで優れたパフォーマンスを実現している。
LLMを利用したAIエージェントをマルチモーダルドメインに拡張することに焦点を当てた、新たな研究トレンドがある。
本総説は, この急速に発展する分野において, 今後の研究に有用な洞察とガイドラインを提供することを目的としている。
論文 参考訳(メタデータ) (2024-02-23T06:04:23Z) - Large Language Model-based Human-Agent Collaboration for Complex Task
Solving [94.3914058341565]
複雑なタスク解決のためのLarge Language Models(LLM)に基づくヒューマンエージェントコラボレーションの問題を紹介する。
Reinforcement Learning-based Human-Agent Collaboration method, ReHACを提案する。
このアプローチには、タスク解決プロセスにおける人間の介入の最も急進的な段階を決定するために設計されたポリシーモデルが含まれている。
論文 参考訳(メタデータ) (2024-02-20T11:03:36Z) - MAgIC: Investigation of Large Language Model Powered Multi-Agent in
Cognition, Adaptability, Rationality and Collaboration [102.41118020705876]
大規模言語モデル(LLM)は自然言語処理の分野で大きな進歩を遂げている。
アプリケーションがマルチエージェント環境に拡張されるにつれ、包括的な評価フレームワークの必要性が高まっている。
この研究は、マルチエージェント設定内でLLMを評価するために特別に設計された新しいベンチマークフレームワークを導入している。
論文 参考訳(メタデータ) (2023-11-14T21:46:27Z) - Multi-Agent Consensus Seeking via Large Language Models [6.922356864800498]
大規模言語モデル(LLM)によって駆動されるマルチエージェントシステムは、複雑なタスクを協調的に解決する有望な能力を示している。
この研究は、マルチエージェントコラボレーションにおける根本的な問題であるコンセンサス探索について考察する。
論文 参考訳(メタデータ) (2023-10-31T03:37:11Z) - Building Cooperative Embodied Agents Modularly with Large Language
Models [104.57849816689559]
本研究では, 分散制御, 生の知覚観察, コストのかかるコミュニケーション, 様々な実施環境下でインスタンス化された多目的タスクといった課題に対処する。
我々は,LLMの常識知識,推論能力,言語理解,テキスト生成能力を活用し,認知に触発されたモジュラーフレームワークにシームレスに組み込む。
C-WAH と TDW-MAT を用いた実験により, GPT-4 で駆動される CoELA が, 強い計画に基づく手法を超越し, 創発的な効果的なコミュニケーションを示すことを示した。
論文 参考訳(メタデータ) (2023-07-05T17:59:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。