論文の概要: StyleChat: Learning Recitation-Augmented Memory in LLMs for Stylized Dialogue Generation
- arxiv url: http://arxiv.org/abs/2403.11439v1
- Date: Mon, 18 Mar 2024 03:26:18 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-19 16:47:44.217971
- Title: StyleChat: Learning Recitation-Augmented Memory in LLMs for Stylized Dialogue Generation
- Title(参考訳): StyleChat: スティルダイアログ生成のためのLLMにおける再帰記憶の学習
- Authors: Jinpeng Li, Zekai Zhang, Quan Tu, Xin Cheng, Dongyan Zhao, Rui Yan,
- Abstract要約: LLM(Large Language Models)の生成能力を活用することで38のスタイルを持つスタイル化された対話データセットであるStyleEvalを導入する。
本稿では,多タスク型学習戦略と再帰型メモリ戦略を通したスタイル化対話フレームワークであるStyleChatを提案する。
- 参考スコア(独自算出の注目度): 43.29667566560533
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large Language Models (LLMs) demonstrate superior performance in generative scenarios and have attracted widespread attention. Among them, stylized dialogue generation is essential in the context of LLMs for building intelligent and engaging dialogue agent. However the ability of LLMs is data-driven and limited by data bias, leading to poor performance on specific tasks. In particular, stylized dialogue generation suffers from a severe lack of supervised data. Furthermore, although many prompt-based methods have been proposed to accomplish specific tasks, their performance in complex real-world scenarios involving a wide variety of dialog styles further enhancement. In this work, we first introduce a stylized dialogue dataset StyleEval with 38 styles by leveraging the generative power of LLMs comprehensively, which has been carefully constructed with rigorous human-led quality control. Based on this, we propose the stylized dialogue framework StyleChat via recitation-augmented memory strategy and multi-task style learning strategy to promote generalization ability. To evaluate the effectiveness of our approach, we created a test benchmark that included both a generation task and a choice task to comprehensively evaluate trained models and assess whether styles and preferences are remembered and understood. Experimental results show that our proposed framework StyleChat outperforms all the baselines and helps to break the style boundary of LLMs.
- Abstract(参考訳): 大規模言語モデル(LLM)は、生成シナリオにおいて優れた性能を示し、広く注目を集めている。
その中でも, 対話エージェントを構築する上で, LLMの文脈において, スタイリングダイアログ生成が不可欠である。
しかし、LLMの能力はデータ駆動であり、データバイアスによって制限されるため、特定のタスクのパフォーマンスは低下する。
特に、スタイル化された対話生成は、教師付きデータの深刻な欠如に悩まされている。
さらに、特定のタスクを達成するために多くのプロンプトベースの手法が提案されているが、多種多様なダイアログスタイルを含む複雑な実世界のシナリオにおける性能をさらに向上させる。
本研究では、まず、厳密な人間主導品質制御によって慎重に構築されたLLMの生成能力を総合的に活用し、38種類のスタイルを持つスタイル化された対話データセットであるStyleEvalを紹介する。
そこで本研究では,リサイクリング強化メモリ戦略とマルチタスク型学習戦略を用いて,一般化能力を高めるためのスタイル化された対話フレームワークであるStyleChatを提案する。
提案手法の有効性を評価するため,学習モデルの総合的な評価と,スタイルや嗜好が記憶され理解されているかを評価するため,生成タスクと選択タスクの両方を含むテストベンチマークを構築した。
実験の結果,提案フレームワークのStyleChatは全てのベースラインを上回り,LLMのスタイル境界を破るのに役立つことがわかった。
関連論文リスト
- Data Augmentation Integrating Dialogue Flow and Style to Adapt Spoken Dialogue Systems to Low-Resource User Groups [1.7725414095035827]
本研究では,音声対話システム(SDS)が,対話行動の異なるユーザと対話する場合に直面する課題について考察する。
限られたリソースを持つユーザグループのSDS性能を向上させるための新しいデータ拡張フレームワークを提案する。
論文 参考訳(メタデータ) (2024-08-20T03:33:04Z) - DialCLIP: Empowering CLIP as Multi-Modal Dialog Retriever [83.33209603041013]
マルチモーダルダイアログ検索のためのパラメータ効率の高いプロンプトチューニング手法であるDialCLIPを提案する。
提案手法では,事前学習された視覚言語モデルCLIP内のプロンプトに抽出された文脈特徴を学習するためのマルチモーダルコンテキスト生成手法を提案する。
様々なタイプの検索を容易にするために,CLIP出力からマルチモーダル表現空間へのマッピングを学習するために,複数の専門家を設計する。
論文 参考訳(メタデータ) (2024-01-02T07:40:12Z) - Zero-Shot Goal-Directed Dialogue via RL on Imagined Conversations [70.7884839812069]
大規模言語モデル(LLM)は、多くの自然言語タスクに対する強力で一般的な解決策として登場した。
しかしながら、言語生成の最も重要なアプリケーションの多くは対話的であり、エージェントは望ましい結果に達するために相手と話し合わなければならない。
本研究では,そのような目標指向対話に対して,RLでLLMを適応させる新しい手法について検討する。
論文 参考訳(メタデータ) (2023-11-09T18:45:16Z) - Self-Explanation Prompting Improves Dialogue Understanding in Large
Language Models [52.24756457516834]
大規模言語モデル(LLM)の理解能力を高めるための新たな「自己説明(Self-Explanation)」を提案する。
このタスクに依存しないアプローチでは、タスク実行前の各対話発話を分析し、様々な対話中心のタスクのパフォーマンスを向上させる必要がある。
6つのベンチマークデータセットによる実験結果から,本手法は他のゼロショットプロンプトよりも一貫して優れており,数ショットプロンプトの有効性を超えていることが明らかとなった。
論文 参考訳(メタデータ) (2023-09-22T15:41:34Z) - A Mixture-of-Expert Approach to RL-based Dialogue Management [56.08449336469477]
我々は、強化学習を用いて、近視性(一般的な発話の出力)を回避し、全体的なユーザ満足度を最大化する対話エージェントを開発する。
既存のRLアプローチのほとんどは、単語レベルでエージェントを訓練するので、中規模の語彙であっても、非常に複雑なアクション空間を扱う必要がある。
i)会話履歴の多様な意味を学習できるLMと、(ii)対応する発話を生成できる専門的なLM(または専門家)からなる、新しい専門家言語モデル(MoE-LM)を用いたRLベースのDMを開発する。
論文 参考訳(メタデータ) (2022-05-31T19:00:41Z) - Response Generation with Context-Aware Prompt Learning [19.340498579331555]
本稿では,対話生成問題を素早い学習課題とする,事前学習型対話モデリングのための新しい手法を提案する。
限られた対話データを微調整する代わりに、我々のアプローチであるDialogPromptは、対話コンテキストに最適化された連続的なプロンプト埋め込みを学習する。
提案手法は,微調整ベースラインと汎用的なプロンプト学習法を著しく上回っている。
論文 参考訳(メタデータ) (2021-11-04T05:40:13Z) - Prototype-to-Style: Dialogue Generation with Style-Aware Editing on
Retrieval Memory [65.98002918470543]
文体対話生成の課題に対処する新しいプロトタイプ・ツー・スタイルのフレームワークを提案する。
このフレームワークは、IR(Information Retrieval)システムを使用して、検索した応答から応答プロトタイプを抽出する。
スタイリスティック応答生成器は、プロトタイプと所望の言語スタイルをモデル入力として、高品質でスタイリスティックな応答を得る。
論文 参考訳(メタデータ) (2020-04-05T14:36:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。