LLM Guided Evolution - The Automation of Models Advancing Models
- URL: http://arxiv.org/abs/2403.11446v1
- Date: Mon, 18 Mar 2024 03:44:55 GMT
- Title: LLM Guided Evolution - The Automation of Models Advancing Models
- Authors: Clint Morris, Michael Jurado, Jason Zutty,
- Abstract summary: "Guided Evolution" (GE) is a novel framework that diverges from traditional machine learning approaches.
"Evolution of Thought" (EoT) enhances GE by enabling LLMs to reflect on and learn from the outcomes of previous mutations.
Our application of GE in evolving the ExquisiteNetV2 model demonstrates its efficacy.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In the realm of machine learning, traditional model development and automated approaches like AutoML typically rely on layers of abstraction, such as tree-based or Cartesian genetic programming. Our study introduces "Guided Evolution" (GE), a novel framework that diverges from these methods by utilizing Large Language Models (LLMs) to directly modify code. GE leverages LLMs for a more intelligent, supervised evolutionary process, guiding mutations and crossovers. Our unique "Evolution of Thought" (EoT) technique further enhances GE by enabling LLMs to reflect on and learn from the outcomes of previous mutations. This results in a self-sustaining feedback loop that augments decision-making in model evolution. GE maintains genetic diversity, crucial for evolutionary algorithms, by leveraging LLMs' capability to generate diverse responses from expertly crafted prompts and modulate model temperature. This not only accelerates the evolution process but also injects expert like creativity and insight into the process. Our application of GE in evolving the ExquisiteNetV2 model demonstrates its efficacy: the LLM-driven GE autonomously produced variants with improved accuracy, increasing from 92.52% to 93.34%, without compromising model compactness. This underscores the potential of LLMs to accelerate the traditional model design pipeline, enabling models to autonomously evolve and enhance their own designs.
Related papers
- Long Term Memory: The Foundation of AI Self-Evolution [48.52678410533424]
Large language models (LLMs) like GPTs, trained on vast datasets, have demonstrated impressive capabilities in language understanding, reasoning, and planning.
Most studies focus on enhancing these models by training on ever-larger datasets to build more powerful foundation models.
Unlike large-scale training, enabling models to evolve during inference is equally crucial, a process we refer to as AI self-evolution.
arXiv Detail & Related papers (2024-10-21T06:09:30Z) - On the Modeling Capabilities of Large Language Models for Sequential Decision Making [52.128546842746246]
Large pretrained models are showing increasingly better performance in reasoning and planning tasks.
We evaluate their ability to produce decision-making policies, either directly, by generating actions, or indirectly.
In environments with unfamiliar dynamics, we explore how fine-tuning LLMs with synthetic data can significantly improve their reward modeling capabilities.
arXiv Detail & Related papers (2024-10-08T03:12:57Z) - A Survey on Self-Evolution of Large Language Models [116.54238664264928]
Large language models (LLMs) have significantly advanced in various fields and intelligent agent applications.
To address this issue, self-evolution approaches that enable LLMs to autonomously acquire, refine, and learn from experiences generated by the model itself are rapidly growing.
arXiv Detail & Related papers (2024-04-22T17:43:23Z) - Trackable Agent-based Evolution Models at Wafer Scale [0.0]
We focus on the problem of extracting phylogenetic information from agent-based evolution on the 850,000 processor Cerebras Wafer Scale Engine (WSE)
We present an asynchronous island-based genetic algorithm (GA) framework for WSE hardware.
We validate phylogenetic reconstructions from these trials and demonstrate their suitability for inference of underlying evolutionary conditions.
arXiv Detail & Related papers (2024-04-16T19:24:14Z) - Evolutionary Optimization of Model Merging Recipes [21.41838972039297]
We present a novel application of evolutionary algorithms to automate the creation of powerful foundation models.
We propose an evolutionary approach that overcomes the limitation by automatically discovering effective combinations of diverse open-source models.
This work contributes new state-of-the-art models back to the open-source community, and also introduces a new paradigm for automated model composition.
arXiv Detail & Related papers (2024-03-19T22:56:53Z) - When large language models meet evolutionary algorithms [48.213640761641926]
Pre-trained large language models (LLMs) have powerful capabilities for generating creative natural text.
Evolutionary algorithms (EAs) can discover diverse solutions to complex real-world problems.
Motivated by the common collective and directionality of text generation and evolution, this paper illustrates the parallels between LLMs and EAs.
arXiv Detail & Related papers (2024-01-19T05:58:30Z) - SELF: Self-Evolution with Language Feedback [68.6673019284853]
'SELF' (Self-Evolution with Language Feedback) is a novel approach to advance large language models.
It enables LLMs to self-improve through self-reflection, akin to human learning processes.
Our experiments in mathematics and general tasks demonstrate that SELF can enhance the capabilities of LLMs without human intervention.
arXiv Detail & Related papers (2023-10-01T00:52:24Z) - GEM: Group Enhanced Model for Learning Dynamical Control Systems [78.56159072162103]
We build effective dynamical models that are amenable to sample-based learning.
We show that learning the dynamics on a Lie algebra vector space is more effective than learning a direct state transition model.
This work sheds light on a connection between learning of dynamics and Lie group properties, which opens doors for new research directions.
arXiv Detail & Related papers (2021-04-07T01:08:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.