When large language models meet evolutionary algorithms
- URL: http://arxiv.org/abs/2401.10510v2
- Date: Sat, 29 Jun 2024 05:16:33 GMT
- Title: When large language models meet evolutionary algorithms
- Authors: Wang Chao, Jiaxuan Zhao, Licheng Jiao, Lingling Li, Fang Liu, Shuyuan Yang,
- Abstract summary: Pre-trained large language models (LLMs) have powerful capabilities for generating creative natural text.
Evolutionary algorithms (EAs) can discover diverse solutions to complex real-world problems.
Motivated by the common collective and directionality of text generation and evolution, this paper illustrates the parallels between LLMs and EAs.
- Score: 48.213640761641926
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Pre-trained large language models (LLMs) have powerful capabilities for generating creative natural text. Evolutionary algorithms (EAs) can discover diverse solutions to complex real-world problems. Motivated by the common collective and directionality of text generation and evolution, this paper illustrates the parallels between LLMs and EAs, which includes multiple one-to-one key characteristics: token representation and individual representation, position encoding and fitness shaping, position embedding and selection, Transformers block and reproduction, and model training and parameter adaptation. By examining these parallels, we analyze existing interdisciplinary research, with a specific focus on evolutionary fine-tuning and LLM-enhanced EAs. Drawing from these insights, valuable future directions are presented for advancing the integration of LLMs and EAs, while highlighting key challenges along the way. These parallels not only reveal the evolution mechanism behind LLMs but also facilitate the development of evolved artificial agents that approach or surpass biological organisms.
Related papers
- From Linguistic Giants to Sensory Maestros: A Survey on Cross-Modal Reasoning with Large Language Models [56.9134620424985]
Cross-modal reasoning (CMR) is increasingly recognized as a crucial capability in the progression toward more sophisticated artificial intelligence systems.
The recent trend of deploying Large Language Models (LLMs) to tackle CMR tasks has marked a new mainstream of approaches for enhancing their effectiveness.
This survey offers a nuanced exposition of current methodologies applied in CMR using LLMs, classifying these into a detailed three-tiered taxonomy.
arXiv Detail & Related papers (2024-09-19T02:51:54Z) - A Survey on Self-Evolution of Large Language Models [116.54238664264928]
Large language models (LLMs) have significantly advanced in various fields and intelligent agent applications.
To address this issue, self-evolution approaches that enable LLMs to autonomously acquire, refine, and learn from experiences generated by the model itself are rapidly growing.
arXiv Detail & Related papers (2024-04-22T17:43:23Z) - LLM Guided Evolution - The Automation of Models Advancing Models [0.0]
"Guided Evolution" (GE) is a novel framework that diverges from traditional machine learning approaches.
"Evolution of Thought" (EoT) enhances GE by enabling LLMs to reflect on and learn from the outcomes of previous mutations.
Our application of GE in evolving the ExquisiteNetV2 model demonstrates its efficacy.
arXiv Detail & Related papers (2024-03-18T03:44:55Z) - Evolutionary Computation in the Era of Large Language Model: Survey and Roadmap [26.959633651475016]
The interplay between large language models (LLMs) and evolutionary algorithms (EAs) share a common pursuit of applicability in complex problems.
The abundant domain knowledge inherent in LLMs could enable EA to conduct more intelligent searches.
This paper provides a thorough review and a forward-looking roadmap, categorizing the reciprocal inspiration into two main avenues.
arXiv Detail & Related papers (2024-01-18T14:58:17Z) - Evolutionary Dynamic Optimization and Machine Learning [0.0]
Evolutionary Computation (EC) has emerged as a powerful field of Artificial Intelligence, inspired by nature's mechanisms of gradual development.
To overcome these limitations, researchers have integrated learning algorithms with evolutionary techniques.
This integration harnesses the valuable data generated by EC algorithms during iterative searches, providing insights into the search space and population dynamics.
arXiv Detail & Related papers (2023-10-12T22:28:53Z) - Making LLaMA SEE and Draw with SEED Tokenizer [69.1083058794092]
We introduce SEED, an elaborate image tokenizer that empowers Large Language Models with the ability to SEE and Draw.
With SEED tokens, LLM is able to perform scalable multimodal autoregression under its original training recipe.
SEED-LLaMA has exhibited compositional emergent abilities such as multi-turn in-context multimodal generation.
arXiv Detail & Related papers (2023-10-02T14:03:02Z) - Connecting Large Language Models with Evolutionary Algorithms Yields
Powerful Prompt Optimizers [70.18534453485849]
EvoPrompt is a framework for discrete prompt optimization.
It borrows the idea of evolutionary algorithms (EAs) as they exhibit good performance and fast convergence.
It significantly outperforms human-engineered prompts and existing methods for automatic prompt generation.
arXiv Detail & Related papers (2023-09-15T16:50:09Z) - A Survey on Learnable Evolutionary Algorithms for Scalable
Multiobjective Optimization [0.0]
Multiobjective evolutionary algorithms (MOEAs) have been adopted to solve various multiobjective optimization problems (MOPs)
However, these progressively improved MOEAs have not necessarily been equipped with sophisticatedly scalable and learnable problem-solving strategies.
Under different scenarios, it requires divergent thinking to design new powerful MOEAs for solving them effectively.
Research into learnable MOEAs that arm themselves with machine learning techniques for scaling-up MOPs has received extensive attention in the field of evolutionary computation.
arXiv Detail & Related papers (2022-06-23T08:16:01Z) - Investigating Bi-Level Optimization for Learning and Vision from a
Unified Perspective: A Survey and Beyond [114.39616146985001]
In machine learning and computer vision fields, despite the different motivations and mechanisms, a lot of complex problems contain a series of closely related subproblms.
In this paper, we first uniformly express these complex learning and vision problems from the perspective of Bi-Level Optimization (BLO)
Then we construct a value-function-based single-level reformulation and establish a unified algorithmic framework to understand and formulate mainstream gradient-based BLO methodologies.
arXiv Detail & Related papers (2021-01-27T16:20:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.