Graph Partial Label Learning with Potential Cause Discovering
- URL: http://arxiv.org/abs/2403.11449v3
- Date: Thu, 22 Aug 2024 01:57:40 GMT
- Title: Graph Partial Label Learning with Potential Cause Discovering
- Authors: Hang Gao, Jiaguo Yuan, Jiangmeng Li, Peng Qiao, Fengge Wu, Changwen Zheng, Huaping Liu,
- Abstract summary: Graph Networks (GNNs) have garnered widespread attention for their potential to address the challenges posed by graph representation learning.
Due to the inherent complexity and interconnectedness of graphs, accurately annotating graph data for training GNNs is extremely challenging.
- Score: 24.659793052786814
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Graph Neural Networks (GNNs) have garnered widespread attention for their potential to address the challenges posed by graph representation learning, which face complex graph-structured data across various domains. However, due to the inherent complexity and interconnectedness of graphs, accurately annotating graph data for training GNNs is extremely challenging. To address this issue, we have introduced Partial Label Learning (PLL) into graph representation learning. PLL is a critical weakly supervised learning problem where each training instance is associated with a set of candidate labels, including the ground-truth label and the additional interfering labels. PLL allows annotators to make errors, which reduces the difficulty of data labeling. Subsequently, we propose a novel graph representation learning method that enables GNN models to effectively learn discriminative information within the context of PLL. Our approach utilizes potential cause extraction to obtain graph data that holds causal relationships with the labels. By conducting auxiliary training based on the extracted graph data, our model can effectively eliminate the interfering information in the PLL scenario. We support the rationale behind our method with a series of theoretical analyses. Moreover, we conduct extensive evaluations and ablation studies on multiple datasets, demonstrating the superiority of our proposed method.
Related papers
- CORE: Data Augmentation for Link Prediction via Information Bottleneck [25.044734252779975]
Link prediction (LP) is a fundamental task in graph representation learning.
We propose a novel data augmentation method, COmplete and REduce (CORE) to learn compact and predictive augmentations for LP models.
arXiv Detail & Related papers (2024-04-17T03:20:42Z) - Variational Graph Auto-Encoder Based Inductive Learning Method for Semi-Supervised Classification [10.497590357666114]
We propose the Self-Label Augmented VGAE model for inductive graph representation learning.
To leverage the label information for training, our model takes node labels as one-hot encoded inputs and then performs label reconstruction in model training.
Our proposed model archives promise results on node classification with particular superiority under semi-supervised learning settings.
arXiv Detail & Related papers (2024-03-26T08:59:37Z) - GraphGuard: Detecting and Counteracting Training Data Misuse in Graph
Neural Networks [69.97213941893351]
The emergence of Graph Neural Networks (GNNs) in graph data analysis has raised critical concerns about data misuse during model training.
Existing methodologies address either data misuse detection or mitigation, and are primarily designed for local GNN models.
This paper introduces a pioneering approach called GraphGuard, to tackle these challenges.
arXiv Detail & Related papers (2023-12-13T02:59:37Z) - Learning Strong Graph Neural Networks with Weak Information [64.64996100343602]
We develop a principled approach to the problem of graph learning with weak information (GLWI)
We propose D$2$PT, a dual-channel GNN framework that performs long-range information propagation on the input graph with incomplete structure, but also on a global graph that encodes global semantic similarities.
arXiv Detail & Related papers (2023-05-29T04:51:09Z) - Learning Product Graphs from Spectral Templates [3.04585143845864]
Graph Learning (GL) is at the core of inference and analysis of connections in data mining and machine learning (ML)
We propose learning product (high dimensional) graphs from product spectral templates with significantly reduced complexity.
In contrast to the rare current approaches, our approach can learn all types of product graphs without knowing the type of graph products.
arXiv Detail & Related papers (2022-11-05T12:28:11Z) - Data Augmentation for Deep Graph Learning: A Survey [66.04015540536027]
We first propose a taxonomy for graph data augmentation and then provide a structured review by categorizing the related work based on the augmented information modalities.
Focusing on the two challenging problems in DGL (i.e., optimal graph learning and low-resource graph learning), we also discuss and review the existing learning paradigms which are based on graph data augmentation.
arXiv Detail & Related papers (2022-02-16T18:30:33Z) - Towards Unsupervised Deep Graph Structure Learning [67.58720734177325]
We propose an unsupervised graph structure learning paradigm, where the learned graph topology is optimized by data itself without any external guidance.
Specifically, we generate a learning target from the original data as an "anchor graph", and use a contrastive loss to maximize the agreement between the anchor graph and the learned graph.
arXiv Detail & Related papers (2022-01-17T11:57:29Z) - Deconfounded Training for Graph Neural Networks [98.06386851685645]
We present a new paradigm of decon training (DTP) that better mitigates the confounding effect and latches on the critical information.
Specifically, we adopt the attention modules to disentangle the critical subgraph and trivial subgraph.
It allows GNNs to capture a more reliable subgraph whose relation with the label is robust across different distributions.
arXiv Detail & Related papers (2021-12-30T15:22:35Z) - Sub-graph Contrast for Scalable Self-Supervised Graph Representation
Learning [21.0019144298605]
Existing graph neural networks fed with the complete graph data are not scalable due to limited computation and memory costs.
textscSubg-Con is proposed by utilizing the strong correlation between central nodes and their sampled subgraphs to capture regional structure information.
Compared with existing graph representation learning approaches, textscSubg-Con has prominent performance advantages in weaker supervision requirements, model learning scalability, and parallelization.
arXiv Detail & Related papers (2020-09-22T01:58:19Z) - Contrastive and Generative Graph Convolutional Networks for Graph-based
Semi-Supervised Learning [64.98816284854067]
Graph-based Semi-Supervised Learning (SSL) aims to transfer the labels of a handful of labeled data to the remaining massive unlabeled data via a graph.
A novel GCN-based SSL algorithm is presented in this paper to enrich the supervision signals by utilizing both data similarities and graph structure.
arXiv Detail & Related papers (2020-09-15T13:59:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.