論文の概要: VideoAgent: A Memory-augmented Multimodal Agent for Video Understanding
- arxiv url: http://arxiv.org/abs/2403.11481v1
- Date: Mon, 18 Mar 2024 05:07:59 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-19 16:36:25.760948
- Title: VideoAgent: A Memory-augmented Multimodal Agent for Video Understanding
- Title(参考訳): VideoAgent: ビデオ理解のためのメモリ拡張マルチモーダルエージェント
- Authors: Yue Fan, Xiaojian Ma, Rujie Wu, Yuntao Du, Jiaqi Li, Zhi Gao, Qing Li,
- Abstract要約: VideoAgent: 1)は、一般的な時間的イベント記述と、ビデオのオブジェクト中心のトラッキング状態の両方を格納する構造化メモリを構築する。
2) 入力タスククエリが与えられた場合,ビデオセグメントのローカライゼーションやオブジェクトメモリクエリなどのツールと,他の視覚基盤モデルを用いて対話的にタスクを解く。
- 参考スコア(独自算出の注目度): 28.316828641898375
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We explore how reconciling several foundation models (large language models and vision-language models) with a novel unified memory mechanism could tackle the challenging video understanding problem, especially capturing the long-term temporal relations in lengthy videos. In particular, the proposed multimodal agent VideoAgent: 1) constructs a structured memory to store both the generic temporal event descriptions and object-centric tracking states of the video; 2) given an input task query, it employs tools including video segment localization and object memory querying along with other visual foundation models to interactively solve the task, utilizing the zero-shot tool-use ability of LLMs. VideoAgent demonstrates impressive performances on several long-horizon video understanding benchmarks, an average increase of 6.6% on NExT-QA and 26.0% on EgoSchema over baselines, closing the gap between open-sourced models and private counterparts including Gemini 1.5 Pro.
- Abstract(参考訳): 本稿では,複数の基礎モデル(大規模言語モデルと視覚言語モデル)を新しい統一記憶機構と組み合わせることで,ビデオ理解の難しさ,特に長大なビデオにおける長期的時間的関係の把握にどう取り組むかを検討する。
特に、提案されているマルチモーダルエージェント VideoAgent:
1) ビデオの時間的事象記述とオブジェクト中心追跡状態の両方を格納するための構造化メモリを構築する。
2) インプットタスククエリでは,ビデオセグメントのローカライゼーションやオブジェクトメモリクエリなどのツールと他の視覚的基礎モデルを用いて対話的にタスクを解決し,LDMのゼロショットツール使用能力を活用している。
VideoAgentは、いくつかの長距離ビデオ理解ベンチマークで印象的なパフォーマンスを示し、ベースライン上でNExT-QAが6.6%、EgoSchemaが26.0%上昇し、オープンソースのモデルとGemini 1.5 Proを含むプライベートなモデルとのギャップを埋める。
関連論文リスト
- SALOVA: Segment-Augmented Long Video Assistant for Targeted Retrieval and Routing in Long-Form Video Analysis [52.050036778325094]
本稿では,SALOVA: Segment-Augmented Video Assistantを紹介する。
87.8Kビデオの高品質なコレクションをセグメントレベルで高密度にキャプションし、シーンの連続性を捕捉し、リッチなコンテキストを維持する。
本フレームワークは,クエリに応答して,関連ビデオセグメントの正確な識別と検索を可能にすることで,現在のビデオLMMの限界を緩和する。
論文 参考訳(メタデータ) (2024-11-25T08:04:47Z) - One Token to Seg Them All: Language Instructed Reasoning Segmentation in Videos [41.34787907803329]
VideoLISAは、ビデオ内の言語命令による推論セグメンテーションの問題に対処するために設計された、ビデオベースのマルチモーダルな大規模言語モデルである。
VideoLISAは、言語命令に基づいてビデオ内に時間的に一貫したセグメンテーションマスクを生成する。
論文 参考訳(メタデータ) (2024-09-29T07:47:15Z) - ViLLa: Video Reasoning Segmentation with Large Language Model [48.75470418596875]
そこで我々は,新しいビデオセグメンテーションタスクであるビデオ推論セグメンテーションを提案する。
このタスクは、複雑な入力テキストクエリが与えられたセグメンテーションマスクのトラックレットを出力するように設計されている。
ViLLa: 大規模言語モデルを用いたビデオ推論セグメンテーションを提案する。
論文 参考訳(メタデータ) (2024-07-18T17:59:17Z) - Needle In A Video Haystack: A Scalable Synthetic Evaluator for Video MLLMs [20.168429351519055]
ビデオ理解はマルチモーダル大言語モデル(LMLM)にとって重要な次のステップである
合成ビデオ生成によるベンチマーク構築フレームワークであるVideoNIAH(Video Needle In A Haystack)を提案する。
我々は、プロプライエタリモデルとオープンソースモデルの両方を包括的に評価し、ビデオ理解能力の重大な違いを明らかにする。
論文 参考訳(メタデータ) (2024-06-13T17:50:05Z) - MA-LMM: Memory-Augmented Large Multimodal Model for Long-Term Video Understanding [66.56100008577134]
本研究は,長期的映像理解のための効率的かつ効果的なモデルの設計に焦点を当てる。
我々は,過去の映像情報をメモリバンクに格納し,オンラインで動画を処理することを提案する。
我々のモデルは、複数のデータセットにわたって最先端のパフォーマンスを達成することができる。
論文 参考訳(メタデータ) (2024-04-08T17:59:24Z) - LongVLM: Efficient Long Video Understanding via Large Language Models [55.813206751150716]
LongVLMはビデオ理解のためのシンプルだが強力なビデオLLMである。
ローカル情報とグローバル情報の両方を含むビデオ表現をエンコードする。
我々のモデルは、長いビデオ理解のためのより正確な応答を生成する。
論文 参考訳(メタデータ) (2024-04-04T11:33:29Z) - VideoAgent: Long-form Video Understanding with Large Language Model as Agent [26.903040507914053]
本稿では,大規模言語モデルを中心的エージェントとして利用して,重要な情報を特定し,コンパイルして質問に答える,新たなエージェントベースシステムであるVideoAgentを紹介する。
本研究では,現在の最先端手法よりも優れた手法の有効性と効率性を示す。
論文 参考訳(メタデータ) (2024-03-15T17:57:52Z) - A Simple Recipe for Contrastively Pre-training Video-First Encoders
Beyond 16 Frames [54.90226700939778]
我々は,大規模な画像テキストモデルを浅部時間融合によりビデオに転送する共通パラダイムを構築した。
1)標準ビデオデータセットにおけるビデオ言語アライメントの低下による空間能力の低下と,(2)処理可能なフレーム数のボトルネックとなるメモリ消費の増大である。
論文 参考訳(メタデータ) (2023-12-12T16:10:19Z) - MINOTAUR: Multi-task Video Grounding From Multimodal Queries [70.08973664126873]
長文ビデオにおける問合せに基づくビデオ理解に一貫した単一のモデルを提案する。
特に、我々のモデルは、Ego4D Episodic Memoryベンチマークの3つのタスクすべてに対処できる。
論文 参考訳(メタデータ) (2023-02-16T04:00:03Z) - Dense-Caption Matching and Frame-Selection Gating for Temporal
Localization in VideoQA [96.10612095576333]
本稿では,マルチモーダルな入力源を効果的に統合し,時間的関連情報から質問に答えるビデオ質問応答モデルを提案する。
また,2レベルアテンション(単語・オブジェクト・フレームレベル),異なるソース(ビデオ・高密度キャプション)に対するマルチヘッド自己統合,ゲートへのより関連性の高い情報伝達などで構成されている。
当社のモデルは,各モデルコンポーネントが大きな利益をもたらす,難易度の高いTVQAデータセット上で評価され,全体的なモデルでは,最先端のモデルよりも大きなマージンで優れています。
論文 参考訳(メタデータ) (2020-05-13T16:35:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。