SmartRefine: A Scenario-Adaptive Refinement Framework for Efficient Motion Prediction
- URL: http://arxiv.org/abs/2403.11492v2
- Date: Tue, 19 Mar 2024 17:04:35 GMT
- Title: SmartRefine: A Scenario-Adaptive Refinement Framework for Efficient Motion Prediction
- Authors: Yang Zhou, Hao Shao, Letian Wang, Steven L. Waslander, Hongsheng Li, Yu Liu,
- Abstract summary: We introduce a novel scenario-adaptive refinement strategy, named SmartRefine, to refine prediction with minimal additional computation.
SmartRefine is designed as a generic and flexible approach that can be seamlessly integrated into most state-of-the-art motion prediction models.
By adding SmartRefine to QCNet, we outperform all published ensemble-free works on the Argoverse 2 leaderboard (single agent track) at submission.
- Score: 37.461695201579914
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Predicting the future motion of surrounding agents is essential for autonomous vehicles (AVs) to operate safely in dynamic, human-robot-mixed environments. Context information, such as road maps and surrounding agents' states, provides crucial geometric and semantic information for motion behavior prediction. To this end, recent works explore two-stage prediction frameworks where coarse trajectories are first proposed, and then used to select critical context information for trajectory refinement. However, they either incur a large amount of computation or bring limited improvement, if not both. In this paper, we introduce a novel scenario-adaptive refinement strategy, named SmartRefine, to refine prediction with minimal additional computation. Specifically, SmartRefine can comprehensively adapt refinement configurations based on each scenario's properties, and smartly chooses the number of refinement iterations by introducing a quality score to measure the prediction quality and remaining refinement potential of each scenario. SmartRefine is designed as a generic and flexible approach that can be seamlessly integrated into most state-of-the-art motion prediction models. Experiments on Argoverse (1 & 2) show that our method consistently improves the prediction accuracy of multiple state-of-the-art prediction models. Specifically, by adding SmartRefine to QCNet, we outperform all published ensemble-free works on the Argoverse 2 leaderboard (single agent track) at submission. Comprehensive studies are also conducted to ablate design choices and explore the mechanism behind multi-iteration refinement. Codes are available at https://github.com/opendilab/SmartRefine/
Related papers
- OPUS: Occupancy Prediction Using a Sparse Set [64.60854562502523]
We present a framework to simultaneously predict occupied locations and classes using a set of learnable queries.
OPUS incorporates a suite of non-trivial strategies to enhance model performance.
Our lightest model achieves superior RayIoU on the Occ3D-nuScenes dataset at near 2x FPS, while our heaviest model surpasses previous best results by 6.1 RayIoU.
arXiv Detail & Related papers (2024-09-14T07:44:22Z) - AMP: Autoregressive Motion Prediction Revisited with Next Token Prediction for Autonomous Driving [59.94343412438211]
We introduce the GPT style next token motion prediction into motion prediction.
Different from language data which is composed of homogeneous units -words, the elements in the driving scene could have complex spatial-temporal and semantic relations.
We propose to adopt three factorized attention modules with different neighbors for information aggregation and different position encoding styles to capture their relations.
arXiv Detail & Related papers (2024-03-20T06:22:37Z) - ADAPT: Efficient Multi-Agent Trajectory Prediction with Adaptation [0.0]
ADAPT is a novel approach for jointly predicting the trajectories of all agents in the scene with dynamic weight learning.
Our approach outperforms state-of-the-art methods in both single-agent and multi-agent settings.
arXiv Detail & Related papers (2023-07-26T13:41:51Z) - LOPR: Latent Occupancy PRediction using Generative Models [49.15687400958916]
LiDAR generated occupancy grid maps (L-OGMs) offer a robust bird's eye-view scene representation.
We propose a framework that decouples occupancy prediction into: representation learning and prediction within the learned latent space.
arXiv Detail & Related papers (2022-10-03T22:04:00Z) - Motion Transformer with Global Intention Localization and Local Movement
Refinement [103.75625476231401]
Motion TRansformer (MTR) models motion prediction as the joint optimization of global intention localization and local movement refinement.
MTR achieves state-of-the-art performance on both the marginal and joint motion prediction challenges.
arXiv Detail & Related papers (2022-09-27T16:23:14Z) - Spatio-Temporal Graph Dual-Attention Network for Multi-Agent Prediction
and Tracking [23.608125748229174]
We propose a generic generative neural system for multi-agent trajectory prediction involving heterogeneous agents.
The proposed system is evaluated on three public benchmark datasets for trajectory prediction.
arXiv Detail & Related papers (2021-02-18T02:25:35Z) - TPNet: Trajectory Proposal Network for Motion Prediction [81.28716372763128]
Trajectory Proposal Network (TPNet) is a novel two-stage motion prediction framework.
TPNet first generates a candidate set of future trajectories as hypothesis proposals, then makes the final predictions by classifying and refining the proposals.
Experiments on four large-scale trajectory prediction datasets, show that TPNet achieves the state-of-the-art results both quantitatively and qualitatively.
arXiv Detail & Related papers (2020-04-26T00:01:49Z) - Scenario-Transferable Semantic Graph Reasoning for Interaction-Aware
Probabilistic Prediction [29.623692599892365]
Accurately predicting the possible behaviors of traffic participants is an essential capability for autonomous vehicles.
We propose a novel generic representation for various driving environments by taking the advantage of semantics and domain knowledge.
arXiv Detail & Related papers (2020-04-07T00:34:36Z) - Social-WaGDAT: Interaction-aware Trajectory Prediction via Wasserstein
Graph Double-Attention Network [29.289670231364788]
In this paper, we propose a generic generative neural system for multi-agent trajectory prediction.
We also employ an efficient kinematic constraint layer applied to vehicle trajectory prediction.
The proposed system is evaluated on three public benchmark datasets for trajectory prediction.
arXiv Detail & Related papers (2020-02-14T20:11:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.