論文の概要: A Data-driven Approach for Rapid Detection of Aeroelastic Modes from Flutter Flight Test Based on Limited Sensor Measurements
- arxiv url: http://arxiv.org/abs/2403.11521v1
- Date: Mon, 18 Mar 2024 07:15:01 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-19 16:16:57.335429
- Title: A Data-driven Approach for Rapid Detection of Aeroelastic Modes from Flutter Flight Test Based on Limited Sensor Measurements
- Title(参考訳): 限定センサ計測に基づくフラッター飛行試験による空力モードの迅速検出のためのデータ駆動手法
- Authors: Arpan Das, Pier Marzocca, Giuliano Coppotelli, Oleg Levinski, Paul Taylor,
- Abstract要約: 本研究では,空気弾性モードを特定するために,時間遅延組み込み動的モード分解手法を実装した。
この手法は入力励起の知識を前提とせず、加速度計のチャネルで捉えた応答のみを扱う。
- 参考スコア(独自算出の注目度): 0.3495246564946556
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Flutter flight test involves the evaluation of the airframes aeroelastic stability by applying artificial excitation on the aircraft lifting surfaces. The subsequent responses are captured and analyzed to extract the frequencies and damping characteristics of the system. However, noise contamination, turbulence, non-optimal excitation of modes, and sensor malfunction in one or more sensors make it time-consuming and corrupt the extraction process. In order to expedite the process of identifying and analyzing aeroelastic modes, this study implements a time-delay embedded Dynamic Mode Decomposition technique. This approach is complemented by Robust Principal Component Analysis methodology, and a sparsity promoting criterion which enables the automatic and optimal selection of sparse modes. The anonymized flutter flight test data, provided by the fifth author of this research paper, is utilized in this implementation. The methodology assumes no knowledge of the input excitation, only deals with the responses captured by accelerometer channels, and rapidly identifies the aeroelastic modes. By incorporating a compressed sensing algorithm, the methodology gains the ability to identify aeroelastic modes, even when the number of available sensors is limited. This augmentation greatly enhances the methodology's robustness and effectiveness, making it an excellent choice for real-time implementation during flutter test campaigns.
- Abstract(参考訳): Flutterの飛行試験では、航空機の揚力面に人工的な励起を適用することで、機体の空気弾性安定性を評価する。
その後の応答を捉え解析し、システムの周波数と減衰特性を抽出する。
しかし、ノイズ汚染、乱流、モードの非最適励起、および1つ以上のセンサーにおけるセンサーの故障により、抽出プロセスに時間がかかり劣化する。
本研究では, エアロ弾性モードの同定と解析を高速化するために, 時間遅延埋め込み型動的モード分解手法を実装した。
この手法はロバスト主成分分析法とスパースモードの自動選択を可能にするスパース促進基準によって補完される。
本実装では, 匿名化フラッター飛行試験データを用いて検討を行った。
この手法は入力励起の知識を前提とせず、加速度計のチャネルで捉えた応答のみを扱い、空気弾性モードを迅速に識別する。
圧縮されたセンシングアルゴリズムを組み込むことで、利用可能なセンサの数が限られている場合でも、空気弾性モードを識別することができる。
この拡張は方法論の堅牢性と有効性を大幅に向上させ、フラッターテストキャンペーンのリアルタイム実装に優れた選択肢となる。
関連論文リスト
- Frequency-Aware Deepfake Detection: Improving Generalizability through
Frequency Space Learning [81.98675881423131]
この研究は、目に見えないディープフェイク画像を効果的に識別できるユニバーサルディープフェイク検出器を開発するという課題に対処する。
既存の周波数ベースのパラダイムは、偽造検出のためにGANパイプラインのアップサンプリング中に導入された周波数レベルのアーティファクトに依存している。
本稿では、周波数領域学習を中心にしたFreqNetと呼ばれる新しい周波数認識手法を導入し、ディープフェイク検出器の一般化性を高めることを目的とする。
論文 参考訳(メタデータ) (2024-03-12T01:28:00Z) - Enhancing Lidar-based Object Detection in Adverse Weather using Offset
Sequences in Time [1.1725016312484975]
ライダーによる物体検出は、雨や霧などの悪天候の影響を著しく受けている。
本研究は,ライダーによる物体検出の信頼性に対する悪天候の影響を緩和する有効な方法の総合的研究である。
論文 参考訳(メタデータ) (2024-01-17T08:31:58Z) - A Discrepancy Aware Framework for Robust Anomaly Detection [51.710249807397695]
本稿では,DAF(Disdisrepancy Aware Framework)を提案する。
本手法は,デコーダの欠陥同定に外見に依存しないキューを利用して,その合成外観への依存を緩和する。
単純な合成戦略の下では,既存の手法を大きなマージンで上回り,また,最先端のローカライゼーション性能も達成している。
論文 参考訳(メタデータ) (2023-10-11T15:21:40Z) - Efficient Real-time Smoke Filtration with 3D LiDAR for Search and Rescue
with Autonomous Heterogeneous Robotic Systems [56.838297900091426]
スモークとダストは、搭載された知覚システムに依存するため、あらゆる移動ロボットプラットフォームの性能に影響を与える。
本稿では,重みと空間情報に基づく新しいモジュラー計算フィルタを提案する。
論文 参考訳(メタデータ) (2023-08-14T16:48:57Z) - Improving robustness of jet tagging algorithms with adversarial training [56.79800815519762]
本研究では,フレーバータグ付けアルゴリズムの脆弱性について,敵攻撃による検証を行った。
シミュレーション攻撃の影響を緩和する対人訓練戦略を提案する。
論文 参考訳(メタデータ) (2022-03-25T19:57:19Z) - Anomaly Detection for Unmanned Aerial Vehicle Sensor Data Using a
Stacked Recurrent Autoencoder Method with Dynamic Thresholding [0.3441021278275805]
本稿では,Long Short-Term Memory (LSTM) Deep Learning Autoencoderをベースとした,新しい動的しきい値決定アルゴリズムとUAVデータセットの異常検出のための重み付き損失関数を組み込んだシステムを提案する。
動的しきい値と重み付き損失関数は、精度関連性能指標と真の故障検出速度の両方において、標準静的しきい値法に有望な改善を示した。
論文 参考訳(メタデータ) (2022-03-09T14:16:14Z) - Data-driven detector signal characterization with constrained bottleneck
autoencoders [0.0]
制約付きボトルネックオートエンコーダという形でのディープラーニングは、データから直接、基盤となる未知の検出器応答モデルを学ぶために使用することができる。
トレーニングされたアルゴリズムは、モデルの物理パラメータを推定し、高い忠実度で検出器応答をシミュレートし、検出器信号をデノネーズするために同時に使用することができる。
論文 参考訳(メタデータ) (2022-03-09T09:46:10Z) - Dense Air Quality Maps Using Regressive Facility Location Based Drive By
Sensing [4.264192013842096]
本稿では,隣接する場所におけるスムーズさと自己回帰時間相関を組み込んだ効率的な車両選択フレームワークを提案する。
インド・デリーの公共交通機関からサブセットを選択する際の枠組みを評価する。
論文 参考訳(メタデータ) (2022-01-20T18:20:37Z) - Rethinking Drone-Based Search and Rescue with Aerial Person Detection [79.76669658740902]
航空ドローンの映像の視覚検査は、現在土地捜索救助(SAR)活動に不可欠な部分である。
本稿では,この空中人物検出(APD)タスクを自動化するための新しいディープラーニングアルゴリズムを提案する。
本稿では,Aerial Inspection RetinaNet (AIR) アルゴリズムについて述べる。
論文 参考訳(メタデータ) (2021-11-17T21:48:31Z) - Bandit Quickest Changepoint Detection [55.855465482260165]
すべてのセンサの継続的な監視は、リソースの制約のためにコストがかかる可能性がある。
有限パラメータ化確率分布の一般クラスに対する検出遅延に基づく情報理論の下界を導出する。
本稿では,異なる検知オプションの探索と質問行動の活用をシームレスに両立させる,計算効率のよいオンラインセンシング手法を提案する。
論文 参考訳(メタデータ) (2021-07-22T07:25:35Z) - A Sensitivity Analysis Approach for Evaluating a Radar Simulation for
Virtual Testing of Autonomous Driving Functions [0.0]
レーダシミュレーションの開発と評価のための感度解析手法を提案する。
モジュラーレーダシステムのシミュレーションを提示・パラメータ化して感度解析を行う。
レーダモデルの出力と実走行の測定値を比較して,現実的なモデルの挙動を確かめる。
論文 参考訳(メタデータ) (2020-08-06T15:51:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。