論文の概要: Explainable LiDAR 3D Point Cloud Segmentation and Clustering for Detecting Airplane-Generated Wind Turbulence
- arxiv url: http://arxiv.org/abs/2503.00518v1
- Date: Sat, 01 Mar 2025 14:51:31 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-05 19:22:21.431839
- Title: Explainable LiDAR 3D Point Cloud Segmentation and Clustering for Detecting Airplane-Generated Wind Turbulence
- Title(参考訳): 航空機発生風乱流検出のための説明可能なLiDAR 3次元点雲分割とクラスタリング
- Authors: Zhan Qu, Shuzhou Yuan, Michael Färber, Marius Brennfleck, Niklas Wartha, Anton Stephan,
- Abstract要約: そこで本研究では,光検出とランキング(LiDAR)データを用いて効率的なウェイク渦検出を行う,高度な機械学習手法を提案する。
本研究の新たな特徴は、モデルの決定過程を明確にする摂動に基づく説明手法を使用することである。
リアルタイムの覚醒渦追跡のためのセマンティックセグメンテーションとクラスタリングの組み合わせは、航空安全対策を大幅に前進させる。
- 参考スコア(独自算出の注目度): 8.653321928148545
- License:
- Abstract: Wake vortices - strong, coherent air turbulences created by aircraft - pose a significant risk to aviation safety and therefore require accurate and reliable detection methods. In this paper, we present an advanced, explainable machine learning method that utilizes Light Detection and Ranging (LiDAR) data for effective wake vortex detection. Our method leverages a dynamic graph CNN (DGCNN) with semantic segmentation to partition a 3D LiDAR point cloud into meaningful segments. Further refinement is achieved through clustering techniques. A novel feature of our research is the use of a perturbation-based explanation technique, which clarifies the model's decision-making processes for air traffic regulators and controllers, increasing transparency and building trust. Our experimental results, based on measured and simulated LiDAR scans compared against four baseline methods, underscore the effectiveness and reliability of our approach. This combination of semantic segmentation and clustering for real-time wake vortex tracking significantly advances aviation safety measures, ensuring that these are both effective and comprehensible.
- Abstract(参考訳): 航空機が生み出す強いコヒーレントな空気の乱気流であるウェイク渦は、航空機の安全性に重大なリスクをもたらすため、正確で信頼性の高い検知方法を必要とする。
本稿では,光検出とランキング(LiDAR)データを用いて効率的な起床渦検出を行う,高度な説明可能な機械学習手法を提案する。
本手法は,3次元LiDAR点雲を意味セグメントに分割するために,意味セグメント付き動的グラフCNN(DGCNN)を利用する。
さらなる改良はクラスタリング技術によって達成される。
本研究の新たな特徴は、航空交通規制や管制官の意思決定プロセスを明確にし、透明性を高め、信頼を構築するための摂動に基づく説明手法を使用することである。
測定・シミュレーションしたLiDARスキャンを4つのベースライン法と比較し,提案手法の有効性と信頼性について検討した。
リアルタイムの覚醒渦追跡のためのセマンティックセグメンテーションとクラスタリングの組み合わせは、航空安全対策を大幅に進歩させ、これらが効果的かつ理解可能であることを保証する。
関連論文リスト
- ODM3D: Alleviating Foreground Sparsity for Semi-Supervised Monocular 3D
Object Detection [15.204935788297226]
ODM3Dフレームワークは、トレーニング中にLiDARドメインの知識を単分子検出器に注入するために、様々なレベルでのクロスモーダルな知識蒸留を必要とする。
既存手法の準最適トレーニングの主要因として,前景の空間空間を同定することにより,LiDAR点に埋め込まれた正確な位置化情報を活用する。
KITTI検証とテストベンチマークの両方で1位にランクインし、教師付きまたは半教師付きである既存のモノクラー手法をはるかに上回っている。
論文 参考訳(メタデータ) (2023-10-28T07:12:09Z) - Unsupervised Domain Adaptation for Self-Driving from Past Traversal
Features [69.47588461101925]
本研究では,新しい運転環境に3次元物体検出器を適応させる手法を提案する。
提案手法は,空間的量子化履歴特徴を用いたLiDARに基づく検出モデルを強化する。
実世界のデータセットの実験では、大幅な改善が示されている。
論文 参考訳(メタデータ) (2023-09-21T15:00:31Z) - Efficient Real-time Smoke Filtration with 3D LiDAR for Search and Rescue
with Autonomous Heterogeneous Robotic Systems [56.838297900091426]
スモークとダストは、搭載された知覚システムに依存するため、あらゆる移動ロボットプラットフォームの性能に影響を与える。
本稿では,重みと空間情報に基づく新しいモジュラー計算フィルタを提案する。
論文 参考訳(メタデータ) (2023-08-14T16:48:57Z) - Improving Online Lane Graph Extraction by Object-Lane Clustering [106.71926896061686]
本稿では,局所レーングラフの推定精度を向上させるために,アーキテクチャと損失の定式化を提案する。
提案手法は,中心線をクラスタ中心とすることで,対象を中心線に割り当てることを学ぶ。
提案手法は既存の3次元オブジェクト検出手法の出力を用いて,大幅な性能向上を実現することができることを示す。
論文 参考訳(メタデータ) (2023-07-20T15:21:28Z) - RaLiBEV: Radar and LiDAR BEV Fusion Learning for Anchor Box Free Object
Detection Systems [13.046347364043594]
自動運転では、LiDARとレーダーは環境認識に不可欠である。
最近の最先端の研究は、レーダーとLiDARの融合が悪天候の堅牢な検出につながることを明らかにしている。
鳥眼ビュー融合学習に基づくアンカーボックスフリー物体検出システムを提案する。
論文 参考訳(メタデータ) (2022-11-11T10:24:42Z) - Boosting 3D Object Detection by Simulating Multimodality on Point Clouds [51.87740119160152]
本稿では,LiDAR 画像検出器に追従する特徴や応答をシミュレートすることで,単一モダリティ (LiDAR) 3次元物体検出器を高速化する新しい手法を提案する。
このアプローチでは、単一モダリティ検出器をトレーニングする場合のみ、LiDARイメージデータを必要とし、十分にトレーニングされた場合には、推論時にのみLiDARデータが必要である。
nuScenesデータセットの実験結果から,本手法はSOTA LiDARのみの3D検出器よりも優れていることがわかった。
論文 参考訳(メタデータ) (2022-06-30T01:44:30Z) - Anomaly Detection for Unmanned Aerial Vehicle Sensor Data Using a
Stacked Recurrent Autoencoder Method with Dynamic Thresholding [0.3441021278275805]
本稿では,Long Short-Term Memory (LSTM) Deep Learning Autoencoderをベースとした,新しい動的しきい値決定アルゴリズムとUAVデータセットの異常検出のための重み付き損失関数を組み込んだシステムを提案する。
動的しきい値と重み付き損失関数は、精度関連性能指標と真の故障検出速度の両方において、標準静的しきい値法に有望な改善を示した。
論文 参考訳(メタデータ) (2022-03-09T14:16:14Z) - Attentional Feature Refinement and Alignment Network for Aircraft
Detection in SAR Imagery [24.004052923372548]
SAR(Synthetic Aperture Radar)画像における航空機検出は、航空機の離散的な外観、明らかなクラス内変異、小さなサイズ、深刻な背景の干渉のために難しい課題である。
本稿では,SAR画像中の航空機を競合精度と速度で検出する単一ショット検出器AFRANを提案する。
論文 参考訳(メタデータ) (2022-01-18T16:54:49Z) - Roadside Lidar Vehicle Detection and Tracking Using Range And Intensity
Background Subtraction [0.0]
本稿では,2つの教師なし学習アルゴリズムを組み合わせた道路側LiDAR物体検出手法を提案する。
この手法は商用トラフィックデータ収集プラットフォームに対して検証された。
論文 参考訳(メタデータ) (2022-01-13T00:54:43Z) - Rethinking Drone-Based Search and Rescue with Aerial Person Detection [79.76669658740902]
航空ドローンの映像の視覚検査は、現在土地捜索救助(SAR)活動に不可欠な部分である。
本稿では,この空中人物検出(APD)タスクを自動化するための新しいディープラーニングアルゴリズムを提案する。
本稿では,Aerial Inspection RetinaNet (AIR) アルゴリズムについて述べる。
論文 参考訳(メタデータ) (2021-11-17T21:48:31Z) - SelfVoxeLO: Self-supervised LiDAR Odometry with Voxel-based Deep Neural
Networks [81.64530401885476]
本稿では,これら2つの課題に対処するために,自己教師型LiDARオドメトリー法(SelfVoxeLO)を提案する。
具体的には、生のLiDARデータを直接処理する3D畳み込みネットワークを提案し、3D幾何パターンをよりよく符号化する特徴を抽出する。
我々は,KITTIとApollo-SouthBayという2つの大規模データセット上での手法の性能を評価する。
論文 参考訳(メタデータ) (2020-10-19T09:23:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。