論文の概要: Continual Forgetting for Pre-trained Vision Models
- arxiv url: http://arxiv.org/abs/2403.11530v1
- Date: Mon, 18 Mar 2024 07:33:56 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-19 16:16:57.325099
- Title: Continual Forgetting for Pre-trained Vision Models
- Title(参考訳): 事前学習型視覚モデルのための連続的鍛造法
- Authors: Hongbo Zhao, Bolin Ni, Haochen Wang, Junsong Fan, Fei Zhu, Yuxi Wang, Yuntao Chen, Gaofeng Meng, Zhaoxiang Zhang,
- Abstract要約: 現実のシナリオでは、選択的な情報は事前訓練されたモデルから継続的に取り除かれることが期待される。
効率的な削除のためのグループスパースロラ(GS-LoRA)を提案する。
我々は,顔認識,物体検出,画像分類に関する広範な実験を行い,GS-LoRAが他のクラスに最小限の影響で,特定のクラスを忘れることが実証された。
- 参考スコア(独自算出の注目度): 70.51165239179052
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: For privacy and security concerns, the need to erase unwanted information from pre-trained vision models is becoming evident nowadays. In real-world scenarios, erasure requests originate at any time from both users and model owners. These requests usually form a sequence. Therefore, under such a setting, selective information is expected to be continuously removed from a pre-trained model while maintaining the rest. We define this problem as continual forgetting and identify two key challenges. (i) For unwanted knowledge, efficient and effective deleting is crucial. (ii) For remaining knowledge, the impact brought by the forgetting procedure should be minimal. To address them, we propose Group Sparse LoRA (GS-LoRA). Specifically, towards (i), we use LoRA modules to fine-tune the FFN layers in Transformer blocks for each forgetting task independently, and towards (ii), a simple group sparse regularization is adopted, enabling automatic selection of specific LoRA groups and zeroing out the others. GS-LoRA is effective, parameter-efficient, data-efficient, and easy to implement. We conduct extensive experiments on face recognition, object detection and image classification and demonstrate that GS-LoRA manages to forget specific classes with minimal impact on other classes. Codes will be released on \url{https://github.com/bjzhb666/GS-LoRA}.
- Abstract(参考訳): プライバシーとセキュリティの懸念から、事前訓練された視覚モデルから不要な情報を消去する必要があることが近年明らかになっている。
現実のシナリオでは、消去要求はユーザーとモデル所有者の両方からいつでも発生します。
これらの要求は通常、シーケンスを形成します。
そのため、この設定では、残りを維持しつつ、事前訓練されたモデルから選択情報を連続的に除去することが期待される。
我々はこの問題を連続的な忘れ物として定義し、2つの重要な課題を識別する。
一 望ましくない知識のためには、効率的かつ効果的な削除が不可欠である。
(二)残りの知識については、忘れる手続きによる影響は最小限とする。
そこで我々は,GS-LoRA (Group Sparse LoRA) を提案する。
具体的には
i) 個別にタスクを忘れるたびに,Transformerブロック内のFFN層を微調整するためにLoRAモジュールを使用します。
(ii) 単純群スパース正規化を採用し、特定の LoRA 群の自動選択を可能とし、他の群をゼロにすることができる。
GS-LoRAは効率的、パラメータ効率、データ効率、実装が容易である。
我々は,顔認識,物体検出,画像分類に関する広範な実験を行い,GS-LoRAが他のクラスに最小限の影響で,特定のクラスを忘れることが実証された。
コードは \url{https://github.com/bjzhb666/GS-LoRA} でリリースされる。
関連論文リスト
- LoRA Unlearns More and Retains More (Student Abstract) [0.0]
PruneLoRAは、モデルに低ランクの更新を適用することで、大規模なパラメータ更新の必要性を減らす。
そこで我々はLoRAを利用してプルーンドモデルのパラメータのサブセットを選択的に修正し、計算コスト、メモリ要件を低減し、残りのクラスの性能を維持するモデルの能力を向上させる。
論文 参考訳(メタデータ) (2024-11-16T16:47:57Z) - Lifelong Personalized Low-Rank Adaptation of Large Language Models for Recommendation [50.837277466987345]
我々は、推奨のために大規模言語モデル(LLM)の分野に焦点を当てる。
ユーザ毎に独立したLoRAを管理するPersonalized LoRAモジュールを組み込んだRecLoRAを提案する。
また、Few2Many Learning Strategyを設計し、従来のレコメンデーションモデルをレンズとして使用して、小さなトレーニングスペースをフルスペースに拡大する。
論文 参考訳(メタデータ) (2024-08-07T04:20:28Z) - Retrieval-Augmented Mixture of LoRA Experts for Uploadable Machine Learning [57.36978335727009]
Low-Rank Adaptation (LoRA)は、大規模言語モデル(LLM)を微調整する効率的な方法を提供する。
本稿では,入力プロンプトに基づいて複数のLoRAを適応的に検索・構成するフレームワークを提案する。
論文 参考訳(メタデータ) (2024-06-24T05:24:41Z) - Improving LoRA in Privacy-preserving Federated Learning [44.47315926976059]
ローランク適応(ローランク適応、LoRA)は、事前訓練された言語モデルにおける最も一般的なタスク固有パラメータ効率細調整(PEFT)手法の1つである。
本稿では,これらの課題を緩和するために,LoRAの効率的かつ効果的なフェデレートフリーズA LoRA(FFA-LoRA)を提案する。
論文 参考訳(メタデータ) (2024-03-18T23:20:08Z) - Foundation Policies with Hilbert Representations [54.44869979017766]
ラベルなしオフラインデータから一般ポリシーを事前学習するための教師なしフレームワークを提案する。
我々の重要な洞察は、基盤となる環境の時間的構造を保存する構造的表現を学習することである。
実験の結果、教師なしのポリシーは、ゴール条件付きおよび一般のRLタスクをゼロショットで解決できることがわかった。
論文 参考訳(メタデータ) (2024-02-23T19:09:10Z) - PRILoRA: Pruned and Rank-Increasing Low-Rank Adaptation [65.268245109828]
我々はPRILoRAを導入し、各層ごとに異なるランクを線形に割り当て、トレーニングプロセスを通してプルーニングを行う。
8つのGLUEベンチマークで広範な実験を行い,PRILoRAの有効性を検証する。
論文 参考訳(メタデータ) (2024-01-20T20:25:17Z) - DyLoRA: Parameter Efficient Tuning of Pre-trained Models using Dynamic
Search-Free Low-Rank Adaptation [18.922066770467914]
ローランクアダプタ(LoRA)は、モデルの主要なトレーニング済み重量を凍結させ、学習可能なSVDモジュールをモデルに導入する。
LoRAブロックはパラメータ効率が高いが、2つの大きな問題に悩まされている。
これら2つの問題を解決するために,動的低ランク適応(DyLoRA)技術を導入する。
論文 参考訳(メタデータ) (2022-10-14T06:29:22Z) - Federated Zero-Shot Learning for Visual Recognition [55.65879596326147]
本稿では,Federated Zero-Shot Learning FedZSLフレームワークを提案する。
FedZSLは、エッジデバイス上の分散データから中心的なモデルを学ぶ。
FedZSLの有効性と堅牢性は、3つのゼロショットベンチマークデータセットで実施された広範な実験によって実証された。
論文 参考訳(メタデータ) (2022-09-05T14:49:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。