Optimal Layout Synthesis for Deep Quantum Circuits on NISQ Processors with 100+ Qubits
- URL: http://arxiv.org/abs/2403.11598v2
- Date: Mon, 22 Jul 2024 12:00:02 GMT
- Title: Optimal Layout Synthesis for Deep Quantum Circuits on NISQ Processors with 100+ Qubits
- Authors: Irfansha Shaik, Jaco van de Pol,
- Abstract summary: scalable layout synthesis is of utmost importance for NISQ processors.
We propose a SAT encoding based on parallel plans that apply 1 SWAP and a group of CNOTs at each time step.
For the first time, we can optimally map several 8, 14, and 16 qubit circuits onto 54, 80, and 127 qubit platforms with up to 17 SWAPs.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Layout synthesis is mapping a quantum circuit to a quantum processor. SWAP gate insertions are needed for scheduling 2-qubit gates only on connected physical qubits. With the ever-increasing number of qubits in NISQ processors, scalable layout synthesis is of utmost importance. With large optimality gaps observed in heuristic approaches, scalable exact methods are needed. While recent exact and near-optimal approaches scale to moderate circuits, large deep circuits are still out of scope. In this work, we propose a SAT encoding based on parallel plans that apply 1 SWAP and a group of CNOTs at each time step. Using domain-specific information, we maintain optimality in parallel plans while scaling to large and deep circuits. From our results, we show the scalability of our approach which significantly outperforms leading exact and near-optimal approaches (up to 100x). For the first time, we can optimally map several 8, 14, and 16 qubit circuits onto 54, 80, and 127 qubit platforms with up to 17 SWAPs. While adding optimal SWAPs, we also report near-optimal depth in our mapped circuits.
Related papers
- Algorithm-Oriented Qubit Mapping for Variational Quantum Algorithms [3.990724104767043]
Quantum algorithms implemented on near-term devices require qubit mapping due to noise and limited qubit connectivity.
We propose a strategy called algorithm-oriented qubit mapping (AOQMAP) that aims to bridge the gap between exact and scalable mapping methods.
arXiv Detail & Related papers (2023-10-15T13:18:06Z) - Optimal Layout Synthesis for Quantum Circuits as Classical Planning
(full version) [0.0]
Minimizing the number of SWAP gates directly mitigates the error rates when running quantum circuits.
We use optimal classical planners to synthesize the optimal layout for a standard set of benchmarks.
arXiv Detail & Related papers (2023-04-24T11:30:53Z) - Graph Neural Network Autoencoders for Efficient Quantum Circuit
Optimisation [69.43216268165402]
We present for the first time how to use graph neural network (GNN) autoencoders for the optimisation of quantum circuits.
We construct directed acyclic graphs from the quantum circuits, encode the graphs and use the encodings to represent RL states.
Our method is the first realistic first step towards very large scale RL quantum circuit optimisation.
arXiv Detail & Related papers (2023-03-06T16:51:30Z) - Automatic Depth-Optimized Quantum Circuit Synthesis for Diagonal Unitary
Matrices with Asymptotically Optimal Gate Count [9.194399933498323]
It is of great importance to optimize the depth/gate-count when designing quantum circuits for specific tasks.
In this paper, we propose a depth-optimized synthesis algorithm that automatically produces a quantum circuit for any given diagonal unitary matrix.
arXiv Detail & Related papers (2022-12-02T06:58:26Z) - Wide Quantum Circuit Optimization with Topology Aware Synthesis [0.8469686352132708]
Unitary synthesis is an optimization technique that can achieve optimal multi-qubit gate counts while mapping quantum circuits to restrictive qubit topologies.
We present TopAS, a topology aware synthesis tool built with the emphBQSKit framework that preconditions quantum circuits before mapping.
arXiv Detail & Related papers (2022-06-27T21:59:30Z) - OMPQ: Orthogonal Mixed Precision Quantization [64.59700856607017]
Mixed precision quantization takes advantage of hardware's multiple bit-width arithmetic operations to unleash the full potential of network quantization.
We propose to optimize a proxy metric, the concept of networkity, which is highly correlated with the loss of the integer programming.
This approach reduces the search time and required data amount by orders of magnitude, with little compromise on quantization accuracy.
arXiv Detail & Related papers (2021-09-16T10:59:33Z) - Fast Swapping in a Quantum Multiplier Modelled as a Queuing Network [64.1951227380212]
We propose that quantum circuits can be modeled as queuing networks.
Our method is scalable and has the potential speed and precision necessary for large scale quantum circuit compilation.
arXiv Detail & Related papers (2021-06-26T10:55:52Z) - Space-efficient binary optimization for variational computing [68.8204255655161]
We show that it is possible to greatly reduce the number of qubits needed for the Traveling Salesman Problem.
We also propose encoding schemes which smoothly interpolate between the qubit-efficient and the circuit depth-efficient models.
arXiv Detail & Related papers (2020-09-15T18:17:27Z) - Machine Learning Optimization of Quantum Circuit Layouts [63.55764634492974]
We introduce a quantum circuit mapping, QXX, and its machine learning version, QXX-MLP.
The latter infers automatically the optimal QXX parameter values such that the layed out circuit has a reduced depth.
We present empiric evidence for the feasibility of learning the layout method using approximation.
arXiv Detail & Related papers (2020-07-29T05:26:19Z) - 2D Qubit Placement of Quantum Circuits using LONGPATH [1.6631602844999722]
Two algorithms are proposed to optimize the number of SWAP gates in any arbitrary quantum circuit.
Our approach has a significant reduction in number of SWAP gates in 1D and 2D NTC architecture.
arXiv Detail & Related papers (2020-07-14T04:09:52Z) - Time-Sliced Quantum Circuit Partitioning for Modular Architectures [67.85032071273537]
Current quantum computer designs will not scale.
To scale beyond small prototypes, quantum architectures will likely adopt a modular approach with clusters of tightly connected quantum bits and sparser connections between clusters.
We exploit this clustering and the statically-known control flow of quantum programs to create tractable partitionings which map quantum circuits to modular physical machines one time slice at a time.
arXiv Detail & Related papers (2020-05-25T17:58:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.