Time-Sliced Quantum Circuit Partitioning for Modular Architectures
- URL: http://arxiv.org/abs/2005.12259v1
- Date: Mon, 25 May 2020 17:58:44 GMT
- Title: Time-Sliced Quantum Circuit Partitioning for Modular Architectures
- Authors: Jonathan M. Baker, Casey Duckering, Alexander Hoover, Frederic T.
Chong
- Abstract summary: Current quantum computer designs will not scale.
To scale beyond small prototypes, quantum architectures will likely adopt a modular approach with clusters of tightly connected quantum bits and sparser connections between clusters.
We exploit this clustering and the statically-known control flow of quantum programs to create tractable partitionings which map quantum circuits to modular physical machines one time slice at a time.
- Score: 67.85032071273537
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Current quantum computer designs will not scale. To scale beyond small
prototypes, quantum architectures will likely adopt a modular approach with
clusters of tightly connected quantum bits and sparser connections between
clusters. We exploit this clustering and the statically-known control flow of
quantum programs to create tractable partitioning heuristics which map quantum
circuits to modular physical machines one time slice at a time. Specifically,
we create optimized mappings for each time slice, accounting for the cost to
move data from the previous time slice and using a tunable lookahead scheme to
reduce the cost to move to future time slices. We compare our approach to a
traditional statically-mapped, owner-computes model. Our results show strict
improvement over the static mapping baseline. We reduce the non-local
communication overhead by 89.8\% in the best case and by 60.9\% on average. Our
techniques, unlike many exact solver methods, are computationally tractable.
Related papers
- Arctic: A Field Programmable Quantum Array Scheduling Technique [0.0]
I present the first compiler pass designed to optimize reconfigurable coupling in zoned neutral atom architectures.
I approach qubit mapping and movement scheduling as a max-cut and layered cross-minimization problem.
I compare the method across various algorithms sourced from Supermarq and Qasmbench.
arXiv Detail & Related papers (2024-05-10T01:56:01Z) - Shuttling for Scalable Trapped-Ion Quantum Computers [2.8956730787977083]
We propose an efficient shuttling schedule for Trapped-ion quantum computers.
The proposed approach produces shuttling schedules with a close-to-minimal amount of time steps.
An implementation of the proposed approach is publicly available as part of the open-source Munich Quantum Toolkit.
arXiv Detail & Related papers (2024-02-21T19:00:04Z) - QuantumReservoirPy: A Software Package for Time Series Prediction [44.99833362998488]
We have developed a software package to allow for quantum reservoirs to fit a common structure.
Our package results in simplified development and logical methods of comparison between quantum reservoir architectures.
arXiv Detail & Related papers (2024-01-19T13:31:29Z) - Compiling Quantum Circuits for Dynamically Field-Programmable Neutral Atoms Array Processors [5.012570785656963]
Dynamically field-programmable qubit arrays (DPQA) have emerged as a promising platform for quantum information processing.
In this paper, we consider a DPQA architecture that contains multiple arrays and supports 2D array movements.
We show that our DPQA-based compiled circuits feature reduced scaling overhead compared to a grid fixed architecture.
arXiv Detail & Related papers (2023-06-06T08:13:10Z) - Quantum Clustering with k-Means: a Hybrid Approach [117.4705494502186]
We design, implement, and evaluate three hybrid quantum k-Means algorithms.
We exploit quantum phenomena to speed up the computation of distances.
We show that our hybrid quantum k-Means algorithms can be more efficient than the classical version.
arXiv Detail & Related papers (2022-12-13T16:04:16Z) - Quantum circuit optimization for multiple QPUs using local structure [0.0]
Interconnecting clusters of qubits will be an essential element of scaling up future quantum computers.
We consider a simple strategy of using EPR-mediated remote gates and teleporting qubits between clusters as necessary.
We find significant improvements in circuit depth and interconnect usage.
arXiv Detail & Related papers (2022-06-20T18:01:04Z) - Variational Quantum and Quantum-Inspired Clustering [0.0]
We present a quantum algorithm for clustering data based on a variational quantum circuit.
The algorithm allows to classify data into many clusters, and can easily be implemented in few-qubit Noisy Intermediate-Scale Quantum (NISQ) devices.
arXiv Detail & Related papers (2022-06-20T17:02:19Z) - Efficient Quantum Circuit Design with a Standard Cell Approach, with an Application to Neutral Atom Quantum Computers [45.66259474547513]
We design quantum circuits by using the standard cell approach borrowed from classical circuit design.
We present evidence that, when compared with automatic routing methods, our layout-aware routers are significantly faster and achieve shallower 3D circuits.
arXiv Detail & Related papers (2022-06-10T10:54:46Z) - Towards Quantum Graph Neural Networks: An Ego-Graph Learning Approach [47.19265172105025]
We propose a novel hybrid quantum-classical algorithm for graph-structured data, which we refer to as the Ego-graph based Quantum Graph Neural Network (egoQGNN)
egoQGNN implements the GNN theoretical framework using the tensor product and unity matrix representation, which greatly reduces the number of model parameters required.
The architecture is based on a novel mapping from real-world data to Hilbert space.
arXiv Detail & Related papers (2022-01-13T16:35:45Z) - A quantum processor based on coherent transport of entangled atom arrays [44.62475518267084]
We show a quantum processor with dynamic, nonlocal connectivity, in which entangled qubits are coherently transported in a highly parallel manner.
We use this architecture to realize programmable generation of entangled graph states such as cluster states and a 7-qubit Steane code state.
arXiv Detail & Related papers (2021-12-07T19:00:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.