論文の概要: Fair Distributed Cooperative Bandit Learning on Networks for Intelligent Internet of Things Systems (Technical Report)
- arxiv url: http://arxiv.org/abs/2403.11603v1
- Date: Mon, 18 Mar 2024 09:25:59 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-19 15:57:28.183521
- Title: Fair Distributed Cooperative Bandit Learning on Networks for Intelligent Internet of Things Systems (Technical Report)
- Title(参考訳): インテリジェントモノのインターネットのためのネットワーク上での公平な分散協調帯域学習(技術報告)
- Authors: Ziqun Chen, Kechao Cai, Jinbei Zhang, Zhigang Yu,
- Abstract要約: 本稿では,データ収集を容易にし,公平性を考慮に入れた,インテリジェントIoTシステムのためのマルチプレイヤーマルチアームバンドモデルを提案する。
我々は,分散協調バンドレットアルゴリズムDC-ULCBを設計し,サーバが協調的にセンサを選択してデータレートを最大化し,公平性を保ちながらデータレートを最大化できるようにする。
- 参考スコア(独自算出の注目度): 1.287452323302345
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In intelligent Internet of Things (IoT) systems, edge servers within a network exchange information with their neighbors and collect data from sensors to complete delivered tasks. In this paper, we propose a multiplayer multi-armed bandit model for intelligent IoT systems to facilitate data collection and incorporate fairness considerations. In our model, we establish an effective communication protocol that helps servers cooperate with their neighbors. Then we design a distributed cooperative bandit algorithm, DC-ULCB, enabling servers to collaboratively select sensors to maximize data rates while maintaining fairness in their choices. We conduct an analysis of the reward regret and fairness regret of DC-ULCB, and prove that both regrets have logarithmic instance-dependent upper bounds. Additionally, through extensive simulations, we validate that DC-ULCB outperforms existing algorithms in maximizing reward and ensuring fairness.
- Abstract(参考訳): インテリジェントなIoT(Internet of Things)システムでは、ネットワーク内のエッジサーバが隣人と情報を交換し、センサーからデータを収集してデリバリタスクを完了します。
本稿では,知的IoTシステムのためのマルチプレイヤーマルチアームバンディットモデルを提案する。
本モデルでは,サーバが隣人と協調する上で有効な通信プロトコルを確立する。
次に,分散協調バンドレットアルゴリズムDC-ULCBを設計し,サーバが協調的にセンサを選択してデータレートを最大化し,公平性を維持した。
本研究は,DC-ULCBの報償後悔と公正後悔の分析を行い,両者が対数的インスタンス依存上界を持つことを証明した。
さらに、広範囲なシミュレーションにより、DC-ULCBは報酬の最大化と公平性の確保のために既存のアルゴリズムよりも優れていることを検証した。
関連論文リスト
- Multi-Agent Best Arm Identification in Stochastic Linear Bandits [0.7673339435080443]
固定予算シナリオ下での線形包帯における協調的ベストアーム識別の問題について検討する。
学習モデルでは、複数のエージェントがスターネットワークまたはジェネリックネットワークを介して接続され、線形バンディットインスタンスと並列に相互作用すると考えられる。
我々は、スターネットワークとジェネリックネットワークのためのアルゴリズムMaLinBAI-StarとMaLinBAI-Genをそれぞれ考案した。
論文 参考訳(メタデータ) (2024-11-20T20:09:44Z) - AI Flow at the Network Edge [58.31090055138711]
AI Flowは、デバイス、エッジノード、クラウドサーバ間で利用可能な異種リソースを共同で活用することで、推論プロセスを合理化するフレームワークである。
この記事では、AI Flowのモチベーション、課題、原則を特定するためのポジションペーパーとして機能する。
論文 参考訳(メタデータ) (2024-11-19T12:51:17Z) - Resource-Efficient Sensor Fusion via System-Wide Dynamic Gated Neural Networks [16.0018681576301]
我々はQuantile-Constrained Inference (QIC)と呼ばれる新しいアルゴリズム戦略を提案する。
QICは、上記のシステムのすべての側面について、共同で高品質で迅速な決定を行います。
結果,QICは最適値と一致し,選択肢を80%以上上回っていることを確認した。
論文 参考訳(メタデータ) (2024-10-22T06:12:04Z) - Collaborative Mean Estimation over Intermittently Connected Networks
with Peer-To-Peer Privacy [86.61829236732744]
本研究は、断続接続を有するネットワーク上での分散平均推定(DME)の問題について考察する。
目標は、中央サーバの助けを借りて、分散ノード間でローカライズされたデータサンプルに関するグローバル統計を学習することだ。
ノード間のデータ共有による協調中継とプライバシー漏洩のトレードオフについて検討する。
論文 参考訳(メタデータ) (2023-02-28T19:17:03Z) - Semantic Information Marketing in The Metaverse: A Learning-Based
Contract Theory Framework [68.8725783112254]
仮想サービスプロバイダ(VSP)によるインセンティブのメカニズム設計の問題に対処し,センサデータ販売にIoTデバイスを採用。
帯域幅が限られているため,センサIoTデバイスによる配信データを削減するためにセマンティック抽出アルゴリズムを提案する。
本稿では,新しい反復型契約設計を提案し,マルチエージェント強化学習(MARL)の新たな変種を用いて,モデル付き多次元契約問題の解法を提案する。
論文 参考訳(メタデータ) (2023-02-22T15:52:37Z) - Enabling AI-Generated Content (AIGC) Services in Wireless Edge Networks [68.00382171900975]
無線エッジネットワークでは、不正に生成されたコンテンツの送信はネットワークリソースを不要に消費する可能性がある。
我々は、AIGC-as-a-serviceの概念を示し、エッジネットワークにAをデプロイする際の課題について議論する。
最適なASP選択のための深層強化学習可能なアルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-01-09T09:30:23Z) - Multi-Edge Server-Assisted Dynamic Federated Learning with an Optimized
Floating Aggregation Point [51.47520726446029]
協調エッジ学習(CE-FL)は、分散機械学習アーキテクチャである。
CE-FLの過程をモデル化し,分析訓練を行った。
実世界のテストベッドから収集したデータを用いて,本フレームワークの有効性を示す。
論文 参考訳(メタデータ) (2022-03-26T00:41:57Z) - FedSup: A Communication-Efficient Federated Learning Fatigue Driving
Behaviors Supervision Framework [10.38729333916008]
FedSupは、プライバシーと効率的な疲労検出のためのクライアントエッジクラウドフレームワークです。
FedSupは、フェデレーション学習技術にインスパイアされ、クライアント、エッジ、クラウドサーバー間のコラボレーションをインテリジェントに活用します。
論文 参考訳(メタデータ) (2021-04-25T07:16:49Z) - Identity-Aware Attribute Recognition via Real-Time Distributed Inference
in Mobile Edge Clouds [53.07042574352251]
我々は、MEC対応カメラ監視システムにおいて、re-IDを用いた歩行者属性認識のための新しいモデルの設計を行う。
本稿では,属性認識と人物再IDを協調的に考慮し,分散モジュールの集合を持つ新しい推論フレームワークを提案する。
そこで我々は,提案した分散推論フレームワークのモジュール分布の学習に基づくアルゴリズムを考案した。
論文 参考訳(メタデータ) (2020-08-12T12:03:27Z) - Distributed Learning in Ad-Hoc Networks: A Multi-player Multi-armed
Bandit Framework [0.0]
次世代ネットワークは超高密度で、ピークレートは非常に高いが、ユーザ当たりのトラフィックは比較的低いと期待されている。
この問題を解決するために、他のネットワークとスペクトルを共有する認知アドホックネットワーク(CAHN)が構想されている。
本稿では,最先端のマルチアーム・マルチプレイヤー・バンディットに基づく分散学習アルゴリズムについて論じる。
論文 参考訳(メタデータ) (2020-03-06T18:11:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。