Dual-Channel Multiplex Graph Neural Networks for Recommendation
- URL: http://arxiv.org/abs/2403.11624v3
- Date: Fri, 29 Mar 2024 14:20:17 GMT
- Title: Dual-Channel Multiplex Graph Neural Networks for Recommendation
- Authors: Xiang Li, Chaofan Fu, Zhongying Zhao, Guanjie Zheng, Chao Huang, Junyu Dong, Yanwei Yu,
- Abstract summary: We introduce a novel recommendation framework, Dual-Channel Multiplex Graph Neural Network (DCMGNN)
It incorporates an explicit behavior pattern representation learner to capture the behavior patterns composed of multiplex user-item interaction relations.
It also includes a relation chain representation learning and a relation chain-aware encoder to discover the impact of various auxiliary relations on the target relation.
- Score: 41.834188809480956
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Efficient recommender systems play a crucial role in accurately capturing user and item attributes that mirror individual preferences. Some existing recommendation techniques have started to shift their focus towards modeling various types of interaction relations between users and items in real-world recommendation scenarios, such as clicks, marking favorites, and purchases on online shopping platforms. Nevertheless, these approaches still grapple with two significant shortcomings: (1) Insufficient modeling and exploitation of the impact of various behavior patterns formed by multiplex relations between users and items on representation learning, and (2) ignoring the effect of different relations in the behavior patterns on the target relation in recommender system scenarios. In this study, we introduce a novel recommendation framework, Dual-Channel Multiplex Graph Neural Network (DCMGNN), which addresses the aforementioned challenges. It incorporates an explicit behavior pattern representation learner to capture the behavior patterns composed of multiplex user-item interaction relations, and includes a relation chain representation learning and a relation chain-aware encoder to discover the impact of various auxiliary relations on the target relation, the dependencies between different relations, and mine the appropriate order of relations in a behavior pattern. Extensive experiments on three real-world datasets demonstrate that our \model surpasses various state-of-the-art recommendation methods. It outperforms the best baselines by 10.06\% and 12.15\% on average across all datasets in terms of R@10 and N@10 respectively.
Related papers
- Coarse-to-Fine Knowledge-Enhanced Multi-Interest Learning Framework for
Multi-Behavior Recommendation [52.89816309759537]
Multi-types of behaviors (e.g., clicking, adding to cart, purchasing, etc.) widely exist in most real-world recommendation scenarios.
The state-of-the-art multi-behavior models learn behavior dependencies indistinguishably with all historical interactions as input.
We propose a novel Coarse-to-fine Knowledge-enhanced Multi-interest Learning framework to learn shared and behavior-specific interests for different behaviors.
arXiv Detail & Related papers (2022-08-03T05:28:14Z) - Multi-Behavior Sequential Recommendation with Temporal Graph Transformer [66.10169268762014]
We tackle the dynamic user-item relation learning with the awareness of multi-behavior interactive patterns.
We propose a new Temporal Graph Transformer (TGT) recommendation framework to jointly capture dynamic short-term and long-range user-item interactive patterns.
arXiv Detail & Related papers (2022-06-06T15:42:54Z) - Contrastive Meta Learning with Behavior Multiplicity for Recommendation [42.15990960863924]
A well-informed recommendation framework could not only help users identify their interested items, but also benefit the revenue of various online platforms.
We propose Contrastive Meta Learning (CML) to maintain dedicated cross-type behavior dependency for different users.
Our method consistently outperforms various state-of-the-art recommendation methods.
arXiv Detail & Related papers (2022-02-17T08:51:24Z) - Multi-Behavior Enhanced Recommendation with Cross-Interaction
Collaborative Relation Modeling [42.6279077675585]
This work proposes a Graph Neural Multi-Behavior Enhanced Recommendation framework.
It explicitly models the dependencies between different types of user-item interactions under a graph-based message passing architecture.
Experiments on real-world recommendation datasets show that our GNMR consistently outperforms state-of-the-art methods.
arXiv Detail & Related papers (2022-01-07T03:12:37Z) - Multiplex Behavioral Relation Learning for Recommendation via Memory
Augmented Transformer Network [25.563806871858073]
This work proposes a Memory-Augmented Transformer Networks (MATN) to enable the recommendation with multiplex behavioral relational information.
In our MATN framework, we first develop a transformer-based multi-behavior relation encoder, to make the learned interaction representations be reflective of the cross-type behavior relations.
A memory attention network is proposed to supercharge MATN capturing the contextual signals of different types of behavior into the category-specific latent embedding space.
arXiv Detail & Related papers (2021-10-08T09:54:43Z) - Knowledge-Enhanced Hierarchical Graph Transformer Network for
Multi-Behavior Recommendation [56.12499090935242]
This work proposes a Knowledge-Enhanced Hierarchical Graph Transformer Network (KHGT) to investigate multi-typed interactive patterns between users and items in recommender systems.
KHGT is built upon a graph-structured neural architecture to capture type-specific behavior characteristics.
We show that KHGT consistently outperforms many state-of-the-art recommendation methods across various evaluation settings.
arXiv Detail & Related papers (2021-10-08T09:44:00Z) - Graph Meta Network for Multi-Behavior Recommendation [24.251784947151755]
We propose a Multi-Behavior recommendation framework with Graph Meta Network to incorporate the multi-behavior pattern modeling into a meta-learning paradigm.
Our developed MB-GMN empowers the user-item interaction learning with the capability of uncovering type-dependent behavior representations.
arXiv Detail & Related papers (2021-10-08T08:38:27Z) - Hyper Meta-Path Contrastive Learning for Multi-Behavior Recommendation [61.114580368455236]
User purchasing prediction with multi-behavior information remains a challenging problem for current recommendation systems.
We propose the concept of hyper meta-path to construct hyper meta-paths or hyper meta-graphs to explicitly illustrate the dependencies among different behaviors of a user.
Thanks to the recent success of graph contrastive learning, we leverage it to learn embeddings of user behavior patterns adaptively instead of assigning a fixed scheme to understand the dependencies among different behaviors.
arXiv Detail & Related papers (2021-09-07T04:28:09Z) - Dual Metric Learning for Effective and Efficient Cross-Domain
Recommendations [85.6250759280292]
Cross domain recommender systems have been increasingly valuable for helping consumers identify useful items in different applications.
Existing cross-domain models typically require large number of overlap users, which can be difficult to obtain in some applications.
We propose a novel cross-domain recommendation model based on dual learning that transfers information between two related domains in an iterative manner.
arXiv Detail & Related papers (2021-04-17T09:18:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.