Many-body quantum heat engines based on free-fermion systems
- URL: http://arxiv.org/abs/2403.11645v1
- Date: Mon, 18 Mar 2024 10:41:38 GMT
- Title: Many-body quantum heat engines based on free-fermion systems
- Authors: Vincenzo Roberto Arezzo, Davide Rossini, Giulia Piccitto,
- Abstract summary: We study the performances of an imperfect quantum many-body Otto engine based on free-fermion systems.
We discuss the emerging optimal working points as functions of the various model parameters.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We study the performances of an imperfect quantum many-body Otto engine based on free-fermion systems. Starting from the thermodynamic definitions of heat and work along ideal isothermal, adiabatic, and isochoric transformations, we generalize these expressions in the case when the hypotheses of ideality are relaxed (i.e., nonperfect thermalization with the external baths, as well as nonperfect quantum adiabaticity in the unitary dynamic protocols). These results are used to evaluate the work and the power delivered by an imperfect quantum many-body heat engine in a finite time, whose working substance is constituted by a quantum Ising chain in a transverse field: We discuss the emerging optimal working points as functions of the various model parameters.
Related papers
- Thermodynamic Roles of Quantum Environments: From Heat Baths to Work Reservoirs [49.1574468325115]
Environments in quantum thermodynamics usually take the role of heat baths.
We show that within the same model, the environment can take three different thermodynamic roles.
The exact role of the environment is determined by the strength and structure of the coupling.
arXiv Detail & Related papers (2024-08-01T15:39:06Z) - Thermodynamics of adiabatic quantum pumping in quantum dots [50.24983453990065]
We consider adiabatic quantum pumping through a resonant level model, a single-level quantum dot connected to two fermionic leads.
We develop a self-contained thermodynamic description of this model accounting for the variation of the energy level of the dot and the tunnelling rates with the thermal baths.
arXiv Detail & Related papers (2023-06-14T16:29:18Z) - Dynamical Control of Quantum Heat Engines Using Exceptional Points [0.09679987540134938]
A quantum thermal machine is an open quantum system coupled to hot and cold thermal baths.
A hallmark of non-Hermiticity is the existence of exceptional points where the eigenvalues of a non-Hermitian Hamiltonian or an Liouvillian superoperator and their associated eigenvectors coalesce.
Here, we report the experimental realisation of a single-ion heat engine and demonstrate the effect of the Liouvillian exceptional points on the dynamics and the performance of a quantum heat engine.
arXiv Detail & Related papers (2022-10-24T06:49:05Z) - Model-free optimization of power/efficiency tradeoffs in quantum thermal
machines using reinforcement learning [0.0]
A quantum thermal machine is an open quantum system that enables the conversion between heat and work at the micro or nano-scale.
We introduce a general model-free framework based on Reinforcement Learning to identify out-of-equilibrium thermodynamic cycles.
arXiv Detail & Related papers (2022-04-10T22:44:28Z) - Gauge Quantum Thermodynamics of Time-local non-Markovian Evolutions [77.34726150561087]
We deal with a generic time-local non-Markovian master equation.
We define current and power to be process-dependent as in classical thermodynamics.
Applying the theory to quantum thermal engines, we show that gauge transformations can change the machine efficiency.
arXiv Detail & Related papers (2022-04-06T17:59:15Z) - Implementation of a two-stroke quantum heat engine with a collisional
model [50.591267188664666]
We put forth a quantum simulation of a stroboscopic two-stroke thermal engine in the IBMQ processor.
The system consists of a quantum spin chain connected to two baths at their boundaries, prepared at different temperatures using the variational quantum thermalizer algorithm.
arXiv Detail & Related papers (2022-03-25T16:55:08Z) - Suppressing coherence effects in quantum-measurement based engines [5.363106329253996]
We propose a universal framework to describe the thermodynamics of a quantum engine fueled by quantum projective measurements.
We show that replacing the standard hot thermal reservoir by a projective measurement operation could improve the performance of the quantum engine.
arXiv Detail & Related papers (2021-08-18T06:51:26Z) - Taking the temperature of a pure quantum state [55.41644538483948]
Temperature is a deceptively simple concept that still raises deep questions at the forefront of quantum physics research.
We propose a scheme to measure the temperature of such pure states through quantum interference.
arXiv Detail & Related papers (2021-03-30T18:18:37Z) - Qubit thermodynamics far from equilibrium: two perspectives about the
nature of heat and work in the quantum regime [68.8204255655161]
We develop an alternative theoretical framework for the thermodynamic analysis of two-level systems.
We observe the appearance of a new term of work, which represents the energy cost of rotating the Bloch vector in presence of the external field that defines the local Hamiltonian.
In order to illustrate our findings we study, from both perspectives, matter-radiation interaction processes for two different systems.
arXiv Detail & Related papers (2021-03-16T09:31:20Z) - Unravelling the non-classicality role in Gaussian heat engines [0.0]
We explore the role of non-classicality in quantum heat engines and design optimal protocols for work extraction.
For two specific cycles, a quantum Otto and a generalised one, we show that non-classicality is a fundamental resource for performing thermodynamic tasks more efficiently.
arXiv Detail & Related papers (2020-12-03T16:28:48Z) - Quantum thermodynamically consistent local master equations [0.0]
We show that local master equations are consistent with thermodynamics and its laws without resorting to a microscopic model.
We consider a quantum system in contact with multiple baths and identify the relevant contributions to the total energy, heat currents and entropy production rate.
arXiv Detail & Related papers (2020-08-11T14:53:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.