論文の概要: Gridless 2D Recovery of Lines using the Sliding Frank-Wolfe Algorithm
- arxiv url: http://arxiv.org/abs/2403.11649v1
- Date: Mon, 18 Mar 2024 10:45:27 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-19 15:37:57.419046
- Title: Gridless 2D Recovery of Lines using the Sliding Frank-Wolfe Algorithm
- Title(参考訳): Sliding Frank-Wolfe アルゴリズムによる直線のグリッドレス2次元復元
- Authors: Kévin Polisano, Basile Dubois-Bonnaire, Sylvain Meignen,
- Abstract要約: Sliding Frank-Wolfeアルゴリズムを利用して、劣化画像のラインリカバリの課題に対処する新しい手法を提案する。
スペクトル画像における線分分解と線分の隆起検出の領域内での線分検出タスクに適した2つの異なるモデルを提案する。
- 参考スコア(独自算出の注目度): 3.4364696628283498
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present a new approach leveraging the Sliding Frank--Wolfe algorithm to address the challenge of line recovery in degraded images. Building upon advances in conditional gradient methods for sparse inverse problems with differentiable measurement models, we propose two distinct models tailored for line detection tasks within the realm of blurred line deconvolution and ridge detection of linear chirps in spectrogram images.
- Abstract(参考訳): Sliding Frank-Wolfeアルゴリズムを利用して、劣化画像のラインリカバリの課題に対処する新しい手法を提案する。
スペクトル画像における線形チャープの線分分解と隆起検出の領域内での線分検出タスクに適した2つの異なるモデルを提案する。
関連論文リスト
- Verification of Geometric Robustness of Neural Networks via Piecewise Linear Approximation and Lipschitz Optimisation [57.10353686244835]
我々は、回転、スケーリング、せん断、翻訳を含む入力画像の幾何学的変換に対するニューラルネットワークの検証の問題に対処する。
提案手法は, 分枝・分枝リプシッツと組み合わせたサンプリングおよび線形近似を用いて, 画素値に対する楽音線形制約を求める。
提案手法では,既存の手法よりも最大32%の検証ケースが解決されている。
論文 参考訳(メタデータ) (2024-08-23T15:02:09Z) - Solving Linear Inverse Problems Provably via Posterior Sampling with
Latent Diffusion Models [98.95988351420334]
本稿では,事前学習した潜在拡散モデルを利用した線形逆問題の解法を初めて提案する。
線形モデル設定において,証明可能なサンプル回復を示すアルゴリズムを理論的に解析する。
論文 参考訳(メタデータ) (2023-07-02T17:21:30Z) - Variational Laplace Autoencoders [53.08170674326728]
変分オートエンコーダは、遅延変数の後部を近似するために、償却推論モデルを用いる。
完全分解ガウス仮定の限定的後部表現性に対処する新しい手法を提案する。
また、深部生成モデルのトレーニングのための変分ラプラスオートエンコーダ(VLAE)という一般的なフレームワークも提示する。
論文 参考訳(メタデータ) (2022-11-30T18:59:27Z) - Improved Overparametrization Bounds for Global Convergence of Stochastic
Gradient Descent for Shallow Neural Networks [1.14219428942199]
本研究では,1つの隠れ層フィードフォワードニューラルネットワークのクラスに対して,勾配降下アルゴリズムのグローバル収束に必要な過パラメトリゼーション境界について検討する。
論文 参考訳(メタデータ) (2022-01-28T11:30:06Z) - Learning Discriminative Shrinkage Deep Networks for Image Deconvolution [122.79108159874426]
本稿では,これらの用語を暗黙的にモデル化する識別的縮小関数を学習することで,効果的に非盲検デコンボリューション手法を提案する。
実験結果から,提案手法は最先端の手法に対して,効率と精度の点で好適に動作することがわかった。
論文 参考訳(メタデータ) (2021-11-27T12:12:57Z) - Bilevel learning of l1-regularizers with closed-form gradients(BLORC) [8.138650738423722]
本稿では,スパーシティー促進型正規化器の教師あり学習法を提案する。
これらのパラメータは、基底真理信号と測定ペアのトレーニングセットにおける再構成の平均2乗誤差を最小限に抑えるために学習される。
論文 参考訳(メタデータ) (2021-11-21T17:01:29Z) - AdaLoss: A computationally-efficient and provably convergent adaptive
gradient method [7.856998585396422]
本稿では,損失関数の情報を用いて数値的な調整を行う,計算に親しみやすい学習スケジュール"AnomidaLoss"を提案する。
テキストおよび制御問題に対するLSTMモデルの適用による数値実験の範囲の検証を行う。
論文 参考訳(メタデータ) (2021-09-17T01:45:25Z) - Cogradient Descent for Dependable Learning [64.02052988844301]
双線形最適化問題に対処するために,CoGDアルゴリズムに基づく信頼度の高い学習法を提案する。
CoGDは、ある変数がスパーシティ制約を持つ場合の双線形問題を解くために導入された。
また、特徴と重みの関連を分解するためにも使用できるため、畳み込みニューラルネットワーク(CNN)をより良く訓練するための我々の手法をさらに一般化することができる。
論文 参考訳(メタデータ) (2021-06-20T04:28:20Z) - Solving Sparse Linear Inverse Problems in Communication Systems: A Deep
Learning Approach With Adaptive Depth [51.40441097625201]
疎信号回復問題に対するエンドツーエンドの訓練可能なディープラーニングアーキテクチャを提案する。
提案手法は,出力するレイヤ数を学習し,各タスクのネットワーク深さを推論フェーズで動的に調整する。
論文 参考訳(メタデータ) (2020-10-29T06:32:53Z) - Class-Specific Blind Deconvolutional Phase Retrieval Under a Generative
Prior [8.712404218757733]
この問題はフーリエ・プチコグラフィー、X線結晶学、可視光通信など様々な画像モダリティで発生する。
本稿では,事前訓練された2つの深層生成ネットワークの下での交互勾配降下アルゴリズムを用いて,この逆問題の解法を提案する。
提案アルゴリズムは,前向き測定モデルを説明する各前駆体の範囲内で,シャープな画像とぼやけたカーネルを見つけ出そうとする。
論文 参考訳(メタデータ) (2020-02-28T07:36:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。