論文の概要: Improved Overparametrization Bounds for Global Convergence of Stochastic
Gradient Descent for Shallow Neural Networks
- arxiv url: http://arxiv.org/abs/2201.12052v1
- Date: Fri, 28 Jan 2022 11:30:06 GMT
- ステータス: 処理完了
- システム内更新日: 2022-01-31 22:29:09.430764
- Title: Improved Overparametrization Bounds for Global Convergence of Stochastic
Gradient Descent for Shallow Neural Networks
- Title(参考訳): 浅層ニューラルネットワークにおける確率勾配降下のグローバル収束のためのオーバーパラメータ境界の改善
- Authors: Bart{\l}omiej Polaczyk and Jacek Cyranka
- Abstract要約: 本研究では,1つの隠れ層フィードフォワードニューラルネットワークのクラスに対して,勾配降下アルゴリズムのグローバル収束に必要な過パラメトリゼーション境界について検討する。
- 参考スコア(独自算出の注目度): 1.14219428942199
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We study the overparametrization bounds required for the global convergence
of stochastic gradient descent algorithm for a class of one hidden layer
feed-forward neural networks, considering most of the activation functions used
in practice, including ReLU. We improve the existing state-of-the-art results
in terms of the required hidden layer width. We introduce a new proof technique
combining nonlinear analysis with properties of random initializations of the
network. First, we establish the global convergence of continuous solutions of
the differential inclusion being a nonsmooth analogue of the gradient flow for
the MSE loss. Second, we provide a technical result (working also for general
approximators) relating solutions of the aforementioned differential inclusion
to the (discrete) stochastic gradient descent sequences, hence establishing
linear convergence towards zero loss for the stochastic gradient descent
iterations.
- Abstract(参考訳): 隠れ層フィードフォワードニューラルネットワークのクラスに対する確率勾配降下アルゴリズムのグローバル収束に必要な過パラメトリゼーション境界について検討し、ReLUを含む実際に用いられる活性化関数のほとんどを考慮して検討した。
必要な層幅を隠蔽することで既存の最先端結果を改善する。
本稿では,非線形解析とネットワークのランダム初期化特性を組み合わせた新しい証明手法を提案する。
まず、MSE損失に対する勾配流の非滑らかな類似である微分包含の連続解のグローバル収束を確立する。
第2に,上記の微分包含の解を(離散)確率的勾配降下列に関連付ける技術的結果(一般近似子に対しても動作する)を提供し,確率的勾配降下反復においてゼロ損失に向かう線形収束を確立する。
関連論文リスト
- Convergence of Implicit Gradient Descent for Training Two-Layer Physics-Informed Neural Networks [3.680127959836384]
暗黙の勾配降下(IGD)は、ある種のマルチスケール問題を扱う場合、共通勾配降下(GD)よりも優れる。
IGDは線形収束速度で大域的に最適解を収束することを示す。
論文 参考訳(メタデータ) (2024-07-03T06:10:41Z) - A Mean-Field Analysis of Neural Stochastic Gradient Descent-Ascent for Functional Minimax Optimization [90.87444114491116]
本稿では,超パラメトリック化された2層ニューラルネットワークの無限次元関数クラス上で定義される最小最適化問題について検討する。
i) 勾配降下指数アルゴリズムの収束と, (ii) ニューラルネットワークの表現学習に対処する。
その結果、ニューラルネットワークによって誘導される特徴表現は、ワッサーシュタイン距離で測定された$O(alpha-1)$で初期表現から逸脱することが許された。
論文 参考訳(メタデータ) (2024-04-18T16:46:08Z) - Stable Nonconvex-Nonconcave Training via Linear Interpolation [51.668052890249726]
本稿では,ニューラルネットワークトレーニングを安定化(大規模)するための原理的手法として,線形アヘッドの理論解析を提案する。
最適化過程の不安定性は、しばしば損失ランドスケープの非単調性によって引き起こされるものであり、非拡張作用素の理論を活用することによって線型性がいかに役立つかを示す。
論文 参考訳(メタデータ) (2023-10-20T12:45:12Z) - Approximation Results for Gradient Descent trained Neural Networks [0.0]
ネットワークは完全に接続された一定の深さ増加幅である。
連続カーネルエラーノルムは、滑らかな関数に必要な自然な滑らかさの仮定の下での近似を意味する。
論文 参考訳(メタデータ) (2023-09-09T18:47:55Z) - Implicit regularization in AI meets generalized hardness of
approximation in optimization -- Sharp results for diagonal linear networks [0.0]
直交線形ネットワークの勾配流による暗黙の正規化について, 鋭い結果を示す。
これを近似の一般化硬度における相転移現象と関連付ける。
結果の非シャープ性は、基礎追従最適化問題に対して、GHA現象が起こらないことを意味する。
論文 参考訳(メタデータ) (2023-07-13T13:27:51Z) - Implicit Regularization for Group Sparsity [33.487964460794764]
正方形回帰損失に対する勾配勾配は, 明示的な正則化を伴わずに, 群間隔構造を持つ解に偏りを示す。
一般雑音設定における回帰問題の勾配ダイナミクスを解析し,最小最適誤差率を求める。
サイズ 1 群の退化の場合、我々の手法は疎線形回帰の新しいアルゴリズムを生み出す。
論文 参考訳(メタデータ) (2023-01-29T20:54:03Z) - Implicit Bias in Leaky ReLU Networks Trained on High-Dimensional Data [63.34506218832164]
本研究では,ReLUを活性化した2層完全連結ニューラルネットワークにおける勾配流と勾配降下の暗黙的バイアスについて検討する。
勾配流には、均一なニューラルネットワークに対する暗黙のバイアスに関する最近の研究を活用し、リーク的に勾配流が2つ以上のランクを持つニューラルネットワークを生成することを示す。
勾配降下は, ランダムな分散が十分小さい場合, 勾配降下の1ステップでネットワークのランクが劇的に低下し, トレーニング中もランクが小さくなることを示す。
論文 参考訳(メタデータ) (2022-10-13T15:09:54Z) - Stability and Generalization Analysis of Gradient Methods for Shallow
Neural Networks [59.142826407441106]
本稿では,アルゴリズム安定性の概念を活用して,浅層ニューラルネットワーク(SNN)の一般化挙動について検討する。
我々は、SNNを訓練するために勾配降下(GD)と勾配降下(SGD)を考慮する。
論文 参考訳(メタデータ) (2022-09-19T18:48:00Z) - On the Effective Number of Linear Regions in Shallow Univariate ReLU
Networks: Convergence Guarantees and Implicit Bias [50.84569563188485]
我々は、ラベルが$r$のニューロンを持つターゲットネットワークの符号によって決定されるとき、勾配流が方向収束することを示す。
我々の結果は、標本サイズによらず、幅が$tildemathcalO(r)$である、緩やかなオーバーパラメータ化をすでに維持しているかもしれない。
論文 参考訳(メタデータ) (2022-05-18T16:57:10Z) - On the Explicit Role of Initialization on the Convergence and Implicit
Bias of Overparametrized Linear Networks [1.0323063834827415]
勾配流下で訓練された単層線形ネットワークの新たな解析法を提案する。
正方形損失はその最適値に指数関数的に収束することを示す。
我々は、トレーニングされたネットワークとmin-norm解の間の距離に基づいて、新しい非漸近上界を導出する。
論文 参考訳(メタデータ) (2021-05-13T15:13:51Z) - Optimal Rates for Averaged Stochastic Gradient Descent under Neural
Tangent Kernel Regime [50.510421854168065]
平均勾配勾配勾配は極小収束率が得られることを示す。
本稿では、ReLUネットワークのNTKで指定されたターゲット関数を最適収束速度で学習できることを示す。
論文 参考訳(メタデータ) (2020-06-22T14:31:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。