論文の概要: WIA-LD2ND: Wavelet-based Image Alignment for Self-supervised Low-Dose CT Denoising
- arxiv url: http://arxiv.org/abs/2403.11672v1
- Date: Mon, 18 Mar 2024 11:20:11 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-19 15:37:57.396934
- Title: WIA-LD2ND: Wavelet-based Image Alignment for Self-supervised Low-Dose CT Denoising
- Title(参考訳): WIA-LD2ND:自己監督型低線量CT用ウェーブレット画像アライメント
- Authors: Haoyu Zhao, Guyu Liang, Zhou Zhao, Bo Du, Yongchao Xu, Rui Yu,
- Abstract要約: 周波数視点による実験結果に基づいてLDCT復調タスクを解析する。
そこで我々は, NDCTデータのみを用いて, WIA-LD2NDと呼ばれる新しい自己監督型CT画像復号法を提案する。
提案したWAA-LD2NDは、ウェーブレットベース画像アライメント(WIA)と周波数対応マルチスケールロス(FAM)の2つのモジュールからなる。
- 参考スコア(独自算出の注目度): 73.61356818928594
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In clinical examinations and diagnoses, low-dose computed tomography (LDCT) is crucial for minimizing health risks compared with normal-dose computed tomography (NDCT). However, reducing the radiation dose compromises the signal-to-noise ratio, leading to degraded quality of CT images. To address this, we analyze LDCT denoising task based on experimental results from the frequency perspective, and then introduce a novel self-supervised CT image denoising method called WIA-LD2ND, only using NDCT data. The proposed WIA-LD2ND comprises two modules: Wavelet-based Image Alignment (WIA) and Frequency-Aware Multi-scale Loss (FAM). First, WIA is introduced to align NDCT with LDCT by mainly adding noise to the high-frequency components, which is the main difference between LDCT and NDCT. Second, to better capture high-frequency components and detailed information, Frequency-Aware Multi-scale Loss (FAM) is proposed by effectively utilizing multi-scale feature space. Extensive experiments on two public LDCT denoising datasets demonstrate that our WIA-LD2ND, only uses NDCT, outperforms existing several state-of-the-art weakly-supervised and self-supervised methods.
- Abstract(参考訳): 臨床検査および診断では,低用量CT(LDCT)は正常用量CT(NDCT)と比較して,健康リスクの最小化に不可欠である。
しかし、放射線線量を減らすことで信号と雑音の比が低下し、CT画像の品質が低下する。
そこで我々は,周波数視点から実験結果に基づいてLDCT復調タスクを解析し,NDCTデータのみを用いて,WAA-LD2NDと呼ばれる新しい自己監督型CT画像復調手法を導入する。
提案したWAA-LD2NDは、ウェーブレットベースの画像アライメント(WIA)と周波数対応マルチスケールロス(FAM)の2つのモジュールからなる。
まず, LDCTとNDCTの主な相違点である高周波成分に雑音を主に付加することにより, NDCTとLDCTの整合性を示す。
第二に、高周波成分と詳細な情報を取得するために、マルチスケール特徴空間を効果的に活用することにより、周波数対応マルチスケールロス(FAM)を提案する。
WIA-LD2NDはNDCTのみを使用しており、最先端の弱い監督と自己管理の手法よりも優れています。
関連論文リスト
- Low-dose CT Denoising with Language-engaged Dual-space Alignment [21.172319554618497]
本稿では,低用量CTデノーミングモデルの最適化を目的としたLanguage-Engaged Dual-space Alignment Los (LEDA)を提案する。
我々の考えは、大きな言語モデル(LLM)を活用して、連続的な知覚空間と離散的な意味空間の両方において、鑑別CTおよび正常線量CT画像を整列させることである。
LEDAには2つのステップがある: まず、LCM誘導のCTオートエンコーダを事前訓練し、CT画像を連続的な高レベルな特徴にエンコードし、それらをトークン空間に量子化し、セマンティックトークンを生成する。
論文 参考訳(メタデータ) (2024-03-10T08:21:50Z) - Sub2Full: split spectrum to boost OCT despeckling without clean data [0.0]
クリーンデータのないOCT復号化のための,Sub2Full (S2F) と呼ばれる革新的な自己管理戦略を提案する。
このアプローチは、2つの繰り返しBスキャンを取得し、第1の繰り返しのスペクトルを低解像度の入力として分割し、第2の繰り返しのスペクトルを高解像度のターゲットとして利用する。
提案手法は,外網膜のサブラミナー構造を可視化するvis-OCT網膜画像で検証し,従来のノイズ2ノイズやノイズ2Voidよりも優れた性能を示した。
論文 参考訳(メタデータ) (2024-01-18T16:59:04Z) - Rotational Augmented Noise2Inverse for Low-dose Computed Tomography
Reconstruction [83.73429628413773]
改良された深層学習手法は、画像のノイズを除去する能力を示しているが、正確な地上の真実を必要とする。
畳み込みニューラルネットワーク(CNN)のトレーニングに基礎的真理を必要としないLDCTのための新しい自己教師型フレームワークを提案する。
数値および実験結果から,Sparse View を用いた N2I の再構成精度は低下しており,提案手法は異なる範囲のサンプリング角度で画像品質を向上する。
論文 参考訳(メタデータ) (2023-12-19T22:40:51Z) - Self-supervised Noise2noise Method Utilizing Corrupted Images with a
Modular Network for LDCT Denoising [9.794579903055668]
ディープラーニングは低線量CT(LDCT)画像復調のための有望な手法である。
従来のディープラーニング手法では、ペア化されたノイズとクリーンなデータセットが必要です。
本稿では,LDCTデータのみを用いてLDCT画像の復調を行う新しい手法を提案する。
論文 参考訳(メタデータ) (2023-08-13T11:26:56Z) - Denoising Simulated Low-Field MRI (70mT) using Denoising Autoencoders
(DAE) and Cycle-Consistent Generative Adversarial Networks (Cycle-GAN) [68.8204255655161]
高磁場, 高分解能, 高信号-雑音比 (SNR) 磁気共鳴イメージング (MRI) 画像を得るために, GAN (Cycle Consistent Generative Adversarial Network) が実装されている。
Denoising Autoencoder(DAE)とCycle-GANをペアとアンペアのケースで訓練するために画像が使用された。
この研究は、古典的DAEを上回り、低磁場MRI画像を改善することができ、画像ペアを必要としない生成的ディープラーニングモデルの使用を実証する。
論文 参考訳(メタデータ) (2023-07-12T00:01:00Z) - Deep learning network to correct axial and coronal eye motion in 3D OCT
retinal imaging [65.47834983591957]
深層学習に基づくニューラルネットワークを用いて,OCTの軸運動とコロナ運動のアーチファクトを1つのスキャンで補正する。
実験結果から, 提案手法は動作アーチファクトを効果的に補正し, 誤差が他の方法よりも小さいことを示す。
論文 参考訳(メタデータ) (2023-05-27T03:55:19Z) - The role of noise in denoising models for anomaly detection in medical
images [62.0532151156057]
病理脳病変は脳画像に多彩な外観を示す。
正規データのみを用いた教師なし異常検出手法が提案されている。
空間分解能の最適化と雑音の大きさの最適化により,異なるモデル学習体制の性能が向上することを示す。
論文 参考訳(メタデータ) (2023-01-19T21:39:38Z) - Self Supervised Low Dose Computed Tomography Image Denoising Using
Invertible Network Exploiting Inter Slice Congruence [20.965610734723636]
LDCT画像とNDCT画像のペア化の必要性を軽減するために, 自己監督型低用量CTデノベーション法を提案する。
我々は、ノイズスライスと隣接する2つのノイズスライスの平均の2乗距離を最小化するために、可逆ニューラルネットワークを訓練した。
論文 参考訳(メタデータ) (2022-11-03T07:16:18Z) - Multi-Channel Convolutional Analysis Operator Learning for Dual-Energy
CT Reconstruction [108.06731611196291]
我々は,多チャンネル畳み込み解析演算子学習法(MCAOL)を開発した。
本研究では,低エネルギー,高エネルギーで減衰画像を共同で再構成する最適化手法を提案する。
論文 参考訳(メタデータ) (2022-03-10T14:22:54Z) - TED-net: Convolution-free T2T Vision Transformer-based Encoder-decoder
Dilation network for Low-dose CT Denoising [5.2227817530931535]
LDCT復号アルゴリズムのファミリを充実させるために,畳み込みフリーの視覚変換器ベースデコーダディレーションネットワーク(TED-net)を提案する。
AAPM-MayoクリニックLDCTグランドチャレンジデータセットを用いて,本モデルの評価を行った。
論文 参考訳(メタデータ) (2021-06-08T19:26:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。