論文の概要: TrajectoryNAS: A Neural Architecture Search for Trajectory Prediction
- arxiv url: http://arxiv.org/abs/2403.11695v1
- Date: Mon, 18 Mar 2024 11:48:41 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-19 15:28:10.292537
- Title: TrajectoryNAS: A Neural Architecture Search for Trajectory Prediction
- Title(参考訳): TrajectoryNAS: 軌道予測のためのニューラルネットワーク検索
- Authors: Ali Asghar Sharifi, Ali Zoljodi, Masoud Daneshtalab,
- Abstract要約: 軌道予測は自律走行システムの重要な構成要素である。
本稿では,軌道予測にポイントクラウドデータを活用する先駆的手法であるTrajectoryNASを紹介する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Autonomous driving systems are a rapidly evolving technology that enables driverless car production. Trajectory prediction is a critical component of autonomous driving systems, enabling cars to anticipate the movements of surrounding objects for safe navigation. Trajectory prediction using Lidar point-cloud data performs better than 2D images due to providing 3D information. However, processing point-cloud data is more complicated and time-consuming than 2D images. Hence, state-of-the-art 3D trajectory predictions using point-cloud data suffer from slow and erroneous predictions. This paper introduces TrajectoryNAS, a pioneering method that focuses on utilizing point cloud data for trajectory prediction. By leveraging Neural Architecture Search (NAS), TrajectoryNAS automates the design of trajectory prediction models, encompassing object detection, tracking, and forecasting in a cohesive manner. This approach not only addresses the complex interdependencies among these tasks but also emphasizes the importance of accuracy and efficiency in trajectory modeling. Through empirical studies, TrajectoryNAS demonstrates its effectiveness in enhancing the performance of autonomous driving systems, marking a significant advancement in the field.Experimental results reveal that TrajcetoryNAS yield a minimum of 4.8 higger accuracy and 1.1* lower latency over competing methods on the NuScenes dataset.
- Abstract(参考訳): 自動運転システムは、自動運転車の生産を可能にする、急速に進化する技術である。
軌道予測は自律走行システムにおいて重要な要素であり、車が周囲の物体の動きを予測して安全なナビゲーションを可能にする。
Lidarのポイントクラウドデータを用いた軌道予測は、3D情報の提供により2次元画像よりも優れている。
しかし、ポイントクラウドデータの処理は2D画像よりも複雑で時間を要する。
したがって、ポイントクラウドデータを用いた最先端の3D軌道予測は、遅くて誤った予測に悩まされる。
本稿では,軌道予測にポイントクラウドデータを活用する先駆的手法であるTrajectoryNASを紹介する。
ニューラルアーキテクチャサーチ(NAS)を活用することで、TrajectoryNASは、オブジェクトの検出、追跡、予測を凝集的に含む、軌道予測モデルの設計を自動化する。
このアプローチは、これらのタスク間の複雑な相互依存に対処するだけでなく、軌道モデリングにおける精度と効率の重要性も強調する。
実験により、TrajectoryNASは、NuScenesデータセット上の競合する手法よりも最低4.8ヒッガー精度と1.1*レイテンシが低いことが判明した。
関連論文リスト
- VECTOR: Velocity-Enhanced GRU Neural Network for Real-Time 3D UAV Trajectory Prediction [2.1825723033513165]
シーケンスベースニューラルネットワークにおけるGRU(Gated Recurrent Units)を用いた新しいトラジェクトリ予測手法を提案する。
我々は、合成と実世界のUAV軌跡データの両方を使用し、幅広い飛行パターン、速度、機敏性を捉えています。
GRUベースのモデルは、平均二乗誤差(MSE)を2×10-8に抑えながら、最先端のRNNアプローチを著しく上回っている。
論文 参考訳(メタデータ) (2024-10-24T07:16:42Z) - GRANP: A Graph Recurrent Attentive Neural Process Model for Vehicle Trajectory Prediction [3.031375888004876]
車両軌道予測のためのGRANP(Graph Recurrent Attentive Neural Process)という新しいモデルを提案する。
GRANPには、決定論的パスと遅延パスを持つエンコーダと、予測のためのデコーダが含まれている。
我々は,GRANPが最先端の結果を達成し,不確実性を効率的に定量化できることを示す。
論文 参考訳(メタデータ) (2024-04-09T05:51:40Z) - A Novel Deep Neural Network for Trajectory Prediction in Automated
Vehicles Using Velocity Vector Field [12.067838086415833]
本稿では,データ駆動学習に基づく手法と,自然に着想を得た概念から生成された速度ベクトル場(VVF)を組み合わせた軌道予測手法を提案する。
精度は、正確な軌道予測のための過去の観測の長い歴史の要求を緩和する観測窓の減少と一致している。
論文 参考訳(メタデータ) (2023-09-19T22:14:52Z) - Pre-training on Synthetic Driving Data for Trajectory Prediction [61.520225216107306]
軌道予測におけるデータ不足の問題を緩和するパイプラインレベルのソリューションを提案する。
我々は、駆動データを生成するためにHDマップ拡張とトラジェクトリ合成を採用し、それらを事前学習することで表現を学習する。
我々は、データ拡張と事前学習戦略の有効性を実証するための広範な実験を行う。
論文 参考訳(メタデータ) (2023-09-18T19:49:22Z) - Interaction-Aware Personalized Vehicle Trajectory Prediction Using
Temporal Graph Neural Networks [8.209194305630229]
既存の手法は主に大規模なデータセットからの一般的な軌道予測に依存している。
本稿では,時間グラフニューラルネットワークを組み込んだ対話型車両軌跡予測手法を提案する。
論文 参考訳(メタデータ) (2023-08-14T20:20:26Z) - An End-to-End Framework of Road User Detection, Tracking, and Prediction
from Monocular Images [11.733622044569486]
我々はODTPと呼ばれる検出、追跡、軌道予測のためのエンドツーエンドのフレームワークを構築している。
検出結果に基づいて、トラジェクトリ予測器であるDCENet++を認識および訓練するために、最先端のオンラインマルチオブジェクト追跡モデルであるQD-3DTを採用している。
本研究では,自律運転に広く利用されているnuScenesデータセット上でのODTPの性能を評価する。
論文 参考訳(メタデータ) (2023-08-09T15:46:25Z) - Point Cloud Forecasting as a Proxy for 4D Occupancy Forecasting [58.45661235893729]
有望な自己管理タスクの1つは、注釈のないLiDARシーケンスからの3Dポイントクラウド予測である。
本課題は,(1)センサ外在物(自動運転車の移動),(2)センサ内在物(特定のLiDARセンサに特有のサンプリングパターン),(3)シーン内の他の物体の形状と動きを暗黙的にキャプチャするアルゴリズムを必要とすることを示す。
センサ外在性および内在性に関する4D占有率予測のポイントクラウドデータをレンダリングすることにより、注釈のないLiDARシーケンスで占有率アルゴリズムをトレーニングし、テストすることができる。
論文 参考訳(メタデータ) (2023-02-25T18:12:37Z) - Efficient and Robust LiDAR-Based End-to-End Navigation [132.52661670308606]
我々は,LiDARをベースとした効率的なエンドツーエンドナビゲーションフレームワークを提案する。
本稿では,スパース畳み込みカーネル最適化とハードウェア対応モデル設計に基づくFast-LiDARNetを提案する。
次に,単一の前方通過のみから予測の不確かさを直接推定するハイブリッド・エビデンシャル・フュージョンを提案する。
論文 参考訳(メタデータ) (2021-05-20T17:52:37Z) - SLPC: a VRNN-based approach for stochastic lidar prediction and
completion in autonomous driving [63.87272273293804]
VRNN(Variiational Recurrent Neural Networks)と呼ばれる生成モデルに基づく新しいLiDAR予測フレームワークを提案する。
提案手法は,フレーム内の奥行きマップを空間的に塗り替えることで,スパースデータを扱う際の従来のビデオ予測フレームワークの限界に対処できる。
VRNNのスパースバージョンとラベルを必要としない効果的な自己監督型トレーニング方法を紹介します。
論文 参考訳(メタデータ) (2021-02-19T11:56:44Z) - IntentNet: Learning to Predict Intention from Raw Sensor Data [86.74403297781039]
本論文では,LiDARセンサが生成する3次元点群と,環境の動的なマップの両方を利用するワンステージ検出器と予測器を開発した。
当社のマルチタスクモデルは、それぞれの別々のモジュールよりも高い精度を実現し、計算を節約します。
論文 参考訳(メタデータ) (2021-01-20T00:31:52Z) - PnPNet: End-to-End Perception and Prediction with Tracking in the Loop [82.97006521937101]
我々は、自動運転車の文脈において、共同認識と運動予測の問題に取り組む。
我々は,入力センサデータとしてエンド・ツー・エンドのモデルであるNetを提案し,各ステップのオブジェクト追跡とその将来レベルを出力する。
論文 参考訳(メタデータ) (2020-05-29T17:57:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。