Learning General Policies for Classical Planning Domains: Getting Beyond C$_2$
- URL: http://arxiv.org/abs/2403.11734v1
- Date: Mon, 18 Mar 2024 12:42:53 GMT
- Title: Learning General Policies for Classical Planning Domains: Getting Beyond C$_2$
- Authors: Simon Ståhlberg, Blai Bonet, Hector Geffner,
- Abstract summary: GNN-based approaches for learning general policies across planning domains are limited by the expressive power of $C$.
We introduce a parameterized version of relational GNNs, when $t$ is infinity, R-GNN[$t$] approximates $3$-GNNs using only quadratic space for embeddings.
For lower values of $t$, such as $t=1 and $t=2$, R-GNN[$t$] achieves a weaker approximation by exchanging fewer messages.
- Score: 15.574717738100727
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: GNN-based approaches for learning general policies across planning domains are limited by the expressive power of $C_2$, namely; first-order logic with two variables and counting. This limitation can be overcomed by transitioning to $k$-GNNs, for $k=3$, wherein object embeddings are substituted with triplet embeddings. Yet, while $3$-GNNs have the expressive power of $C_3$, unlike $1$- and $2$-GNNs that are confined to $C_2$, they require quartic time for message exchange and cubic space for embeddings, rendering them impractical. In this work, we introduce a parameterized version of relational GNNs. When $t$ is infinity, R-GNN[$t$] approximates $3$-GNNs using only quadratic space for embeddings. For lower values of $t$, such as $t=1$ and $t=2$, R-GNN[$t$] achieves a weaker approximation by exchanging fewer messages, yet interestingly, often yield the $C_3$ features required in several planning domains. Furthermore, the new R-GNN[$t$] architecture is the original R-GNN architecture with a suitable transformation applied to the input states only. Experimental results illustrate the clear performance gains of R-GNN[$1$] and R-GNN[$2$] over plain R-GNNs, and also over edge transformers that also approximate $3$-GNNs.
Related papers
- Efficient k-Nearest-Neighbor Machine Translation with Dynamic Retrieval [49.825549809652436]
$k$NN-MT constructs an external datastore to store domain-specific translation knowledge.
adaptive retrieval ($k$NN-MT-AR) dynamically estimates $lambda$ and skips $k$NN retrieval if $lambda$ is less than a fixed threshold.
We propose dynamic retrieval ($k$NN-MT-DR) that significantly extends vanilla $k$NN-MT in two aspects.
arXiv Detail & Related papers (2024-06-10T07:36:55Z) - Spatio-Spectral Graph Neural Networks [50.277959544420455]
We propose Spatio-Spectral Graph Networks (S$2$GNNs)
S$2$GNNs combine spatially and spectrally parametrized graph filters.
We show that S$2$GNNs vanquish over-squashing and yield strictly tighter approximation-theoretic error bounds than MPGNNs.
arXiv Detail & Related papers (2024-05-29T14:28:08Z) - Calibrate and Boost Logical Expressiveness of GNN Over Multi-Relational
and Temporal Graphs [8.095679736030146]
We investigate $mathcalFOC$NN, a fragment of first-order logic with two variables and counting quantifiers.
We propose a simple graph transformation technique, akin to a preprocessing step, which can be executed in linear time.
Our results consistently demonstrate that R$2$-GNN with the graph transformation outperforms the baseline methods on both synthetic and real-world datasets.
arXiv Detail & Related papers (2023-11-03T00:33:24Z) - On the Computational Complexity and Formal Hierarchy of Second Order
Recurrent Neural Networks [59.85314067235965]
We extend the theoretical foundation for the $2nd$-order recurrent network ($2nd$ RNN)
We prove there exists a class of a $2nd$ RNN that is Turing-complete with bounded time.
We also demonstrate that $2$nd order RNNs, without memory, outperform modern-day models such as vanilla RNNs and gated recurrent units in recognizing regular grammars.
arXiv Detail & Related papers (2023-09-26T06:06:47Z) - Distance-Restricted Folklore Weisfeiler-Leman GNNs with Provable Cycle
Counting Power [27.929167547127207]
Ability of graph neural networks (GNNs) to count certain graph substructures, especially cycles, is important.
We propose a novel class of GNNs -- $d$-Distance-Restricted FWL(2) GNNs.
Our model is the most efficient GNN model to date that can count up to 6-cycles.
arXiv Detail & Related papers (2023-09-10T06:13:29Z) - Extending the Design Space of Graph Neural Networks by Rethinking
Folklore Weisfeiler-Lehman [66.23316415757456]
Message passing neural networks (MPNNs) have emerged as the most popular framework of graph neural networks (GNNs) in recent years.
However, their expressive power is limited by the 1-dimensional Weisfeiler-Lehman (1-WL) test.
We propose an extension, $(k,t)$-FWL, which considers any equivariant set as neighbors instead of all nodes.
N$2$-GNN achieves record-breaking results on ZINC-Subset (0.059), outperforming previous SOTA results by 10.6%.
arXiv Detail & Related papers (2023-06-05T21:35:32Z) - Densely Connected $G$-invariant Deep Neural Networks with Signed
Permutation Representations [6.200483285433661]
We introduce and investigate, for finite groups $G$, $G$-invariant deep neural network ($G$-DNN) architectures with ReLU activation.
The preactivations of the $G$-DNNs are able to transform by emphsigned permutation representations (signed perm-reps) of $G$.
We show that there are far more admissible $G$-DNN architectures than those accessible with the concatenated ReLU'' activation function from the literature.
arXiv Detail & Related papers (2023-03-08T14:35:03Z) - Bounding the Width of Neural Networks via Coupled Initialization -- A
Worst Case Analysis [121.9821494461427]
We show how to significantly reduce the number of neurons required for two-layer ReLU networks.
We also prove new lower bounds that improve upon prior work, and that under certain assumptions, are best possible.
arXiv Detail & Related papers (2022-06-26T06:51:31Z) - Graph Neural Networks with Local Graph Parameters [1.8600631687568656]
Local graph parameters can be added to any Graph Neural Networks (GNNs) architecture.
Our results connect GNNs with deep results in finite model theory and finite variable logics.
arXiv Detail & Related papers (2021-06-12T07:43:51Z) - RNNs can generate bounded hierarchical languages with optimal memory [113.73133308478612]
We show that RNNs can efficiently generate bounded hierarchical languages that reflect the scaffolding of natural language syntax.
We introduce Dyck-($k$,$m$), the language of well-nested brackets (of $k$ types) and $m$-bounded nesting depth.
We prove that an RNN with $O(m log k)$ hidden units suffices, an exponential reduction in memory, by an explicit construction.
arXiv Detail & Related papers (2020-10-15T04:42:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.