From Explainable to Interpretable Deep Learning for Natural Language Processing in Healthcare: How Far from Reality?
- URL: http://arxiv.org/abs/2403.11894v4
- Date: Wed, 16 Oct 2024 14:14:27 GMT
- Title: From Explainable to Interpretable Deep Learning for Natural Language Processing in Healthcare: How Far from Reality?
- Authors: Guangming Huang, Yingya Li, Shoaib Jameel, Yunfei Long, Giorgos Papanastasiou,
- Abstract summary: "eXplainable and Interpretable Artificial Intelligence" (XIAI) is introduced to distinguish XAI from IAI.
Our analysis shows that attention mechanisms are the most prevalent emerging IAI technique.
The major challenges identified are that most XIAI does not explore "global" modelling processes, the lack of best practices, and the lack of systematic evaluation and benchmarks.
- Score: 8.423877102146433
- License:
- Abstract: Deep learning (DL) has substantially enhanced natural language processing (NLP) in healthcare research. However, the increasing complexity of DL-based NLP necessitates transparent model interpretability, or at least explainability, for reliable decision-making. This work presents a thorough scoping review of explainable and interpretable DL in healthcare NLP. The term "eXplainable and Interpretable Artificial Intelligence" (XIAI) is introduced to distinguish XAI from IAI. Different models are further categorized based on their functionality (model-, input-, output-based) and scope (local, global). Our analysis shows that attention mechanisms are the most prevalent emerging IAI technique. The use of IAI is growing, distinguishing it from XAI. The major challenges identified are that most XIAI does not explore "global" modelling processes, the lack of best practices, and the lack of systematic evaluation and benchmarks. One important opportunity is to use attention mechanisms to enhance multi-modal XIAI for personalized medicine. Additionally, combining DL with causal logic holds promise. Our discussion encourages the integration of XIAI in Large Language Models (LLMs) and domain-specific smaller models. In conclusion, XIAI adoption in healthcare requires dedicated in-house expertise. Collaboration with domain experts, end-users, and policymakers can lead to ready-to-use XIAI methods across NLP and medical tasks. While challenges exist, XIAI techniques offer a valuable foundation for interpretable NLP algorithms in healthcare.
Related papers
- Diagnostic Reasoning in Natural Language: Computational Model and Application [68.47402386668846]
We investigate diagnostic abductive reasoning (DAR) in the context of language-grounded tasks (NL-DAR)
We propose a novel modeling framework for NL-DAR based on Pearl's structural causal models.
We use the resulting dataset to investigate the human decision-making process in NL-DAR.
arXiv Detail & Related papers (2024-09-09T06:55:37Z) - SCENE: Evaluating Explainable AI Techniques Using Soft Counterfactuals [0.0]
This paper introduces SCENE (Soft Counterfactual Evaluation for Natural language Explainability), a novel evaluation method.
By focusing on token-based substitutions, SCENE creates contextually appropriate and semantically meaningful Soft Counterfactuals.
SCENE provides valuable insights into the strengths and limitations of various XAI techniques.
arXiv Detail & Related papers (2024-08-08T16:36:24Z) - A Survey of Artificial Intelligence in Gait-Based Neurodegenerative Disease Diagnosis [51.07114445705692]
neurodegenerative diseases (NDs) traditionally require extensive healthcare resources and human effort for medical diagnosis and monitoring.
As a crucial disease-related motor symptom, human gait can be exploited to characterize different NDs.
The current advances in artificial intelligence (AI) models enable automatic gait analysis for NDs identification and classification.
arXiv Detail & Related papers (2024-05-21T06:44:40Z) - Usable XAI: 10 Strategies Towards Exploiting Explainability in the LLM Era [77.174117675196]
XAI is being extended towards Large Language Models (LLMs)
This paper analyzes how XAI can benefit LLMs and AI systems.
We introduce 10 strategies, introducing the key techniques for each and discussing their associated challenges.
arXiv Detail & Related papers (2024-03-13T20:25:27Z) - An Explainable AI Framework for Artificial Intelligence of Medical
Things [2.7774194651211217]
We leverage a custom XAI framework, incorporating techniques such as Local Interpretable Model-Agnostic Explanations (LIME), SHapley Additive exPlanations (SHAP), and Gradient-weighted Class Activation Mapping (Grad-Cam)
The proposed framework enhances the effectiveness of strategic healthcare methods and aims to instill trust and promote understanding in AI-driven medical applications.
We apply the XAI framework to brain tumor detection as a use case demonstrating accurate and transparent diagnosis.
arXiv Detail & Related papers (2024-03-07T01:08:41Z) - A Brief Review of Explainable Artificial Intelligence in Healthcare [7.844015105790313]
XAI refers to the techniques and methods for building AI applications.
Model explainability and interpretability are vital successful deployment of AI models in healthcare practices.
arXiv Detail & Related papers (2023-04-04T05:41:57Z) - Connecting Algorithmic Research and Usage Contexts: A Perspective of
Contextualized Evaluation for Explainable AI [65.44737844681256]
A lack of consensus on how to evaluate explainable AI (XAI) hinders the advancement of the field.
We argue that one way to close the gap is to develop evaluation methods that account for different user requirements.
arXiv Detail & Related papers (2022-06-22T05:17:33Z) - CBLUE: A Chinese Biomedical Language Understanding Evaluation Benchmark [51.38557174322772]
We present the first Chinese Biomedical Language Understanding Evaluation benchmark.
It is a collection of natural language understanding tasks including named entity recognition, information extraction, clinical diagnosis normalization, single-sentence/sentence-pair classification.
We report empirical results with the current 11 pre-trained Chinese models, and experimental results show that state-of-the-art neural models perform by far worse than the human ceiling.
arXiv Detail & Related papers (2021-06-15T12:25:30Z) - A Comparative Approach to Explainable Artificial Intelligence Methods in
Application to High-Dimensional Electronic Health Records: Examining the
Usability of XAI [0.0]
XAI aims to produce a demonstrative factor of trust, which for human subjects is achieved through communicative means.
The ideology behind trusting a machine to tend towards the livelihood of a human poses an ethical conundrum.
XAI methods produce visualization of the feature contribution towards a given models output on both a local and global level.
arXiv Detail & Related papers (2021-03-08T18:15:52Z) - Unbox the Black-box for the Medical Explainable AI via Multi-modal and
Multi-centre Data Fusion: A Mini-Review, Two Showcases and Beyond [3.4031539425106683]
Explainable Artificial Intelligence (XAI) is an emerging research topic of machine learning aimed at unboxing how AI systems' black-box choices are made.
Many of the machine learning algorithms can not manifest how and why a decision has been cast.
XAI becomes more and more crucial for deep learning powered applications, especially for medical and healthcare studies.
arXiv Detail & Related papers (2021-02-03T10:56:58Z) - Explainability in Deep Reinforcement Learning [68.8204255655161]
We review recent works in the direction to attain Explainable Reinforcement Learning (XRL)
In critical situations where it is essential to justify and explain the agent's behaviour, better explainability and interpretability of RL models could help gain scientific insight on the inner workings of what is still considered a black box.
arXiv Detail & Related papers (2020-08-15T10:11:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.