SCENE: Evaluating Explainable AI Techniques Using Soft Counterfactuals
- URL: http://arxiv.org/abs/2408.04575v2
- Date: Fri, 16 Aug 2024 06:01:15 GMT
- Title: SCENE: Evaluating Explainable AI Techniques Using Soft Counterfactuals
- Authors: Haoran Zheng, Utku Pamuksuz,
- Abstract summary: This paper introduces SCENE (Soft Counterfactual Evaluation for Natural language Explainability), a novel evaluation method.
By focusing on token-based substitutions, SCENE creates contextually appropriate and semantically meaningful Soft Counterfactuals.
SCENE provides valuable insights into the strengths and limitations of various XAI techniques.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Explainable Artificial Intelligence (XAI) plays a crucial role in enhancing the transparency and accountability of AI models, particularly in natural language processing (NLP) tasks. However, popular XAI methods such as LIME and SHAP have been found to be unstable and potentially misleading, underscoring the need for a standardized evaluation approach. This paper introduces SCENE (Soft Counterfactual Evaluation for Natural language Explainability), a novel evaluation method that leverages large language models (LLMs) to generate Soft Counterfactual explanations in a zero-shot manner. By focusing on token-based substitutions, SCENE creates contextually appropriate and semantically meaningful Soft Counterfactuals without extensive fine-tuning. SCENE adopts Validitysoft and Csoft metrics to assess the effectiveness of model-agnostic XAI methods in text classification tasks. Applied to CNN, RNN, and Transformer architectures, SCENE provides valuable insights into the strengths and limitations of various XAI techniques.
Related papers
- Explainable artificial intelligence (XAI): from inherent explainability to large language models [0.0]
Explainable AI (XAI) techniques facilitate the explainability or interpretability of machine learning models.
This paper details the advancements of explainable AI methods, from inherently interpretable models to modern approaches.
We review explainable AI techniques that leverage vision-language model (VLM) frameworks to automate or improve the explainability of other machine learning models.
arXiv Detail & Related papers (2025-01-17T06:16:57Z) - A Unified Framework for Evaluating the Effectiveness and Enhancing the Transparency of Explainable AI Methods in Real-World Applications [2.0681376988193843]
"Black box" characteristic of AI models constrains interpretability, transparency, and reliability.
This study presents a unified XAI evaluation framework to evaluate correctness, interpretability, robustness, fairness, and completeness of explanations generated by AI models.
arXiv Detail & Related papers (2024-12-05T05:30:10Z) - Explainable AI for Enhancing Efficiency of DL-based Channel Estimation [1.0136215038345013]
Support of artificial intelligence based decision-making is a key element in future 6G networks.
In such applications, using AI as black-box models is risky and challenging.
We propose a novel-based XAI-CHEST framework that is oriented toward channel estimation in wireless communications.
arXiv Detail & Related papers (2024-07-09T16:24:21Z) - EXACT: Towards a platform for empirically benchmarking Machine Learning model explanation methods [1.6383837447674294]
This paper brings together various benchmark datasets and novel performance metrics in an initial benchmarking platform.
Our datasets incorporate ground truth explanations for class-conditional features.
This platform assesses the performance of post-hoc XAI methods in the quality of the explanations they produce.
arXiv Detail & Related papers (2024-05-20T14:16:06Z) - CELA: Cost-Efficient Language Model Alignment for CTR Prediction [70.65910069412944]
Click-Through Rate (CTR) prediction holds a paramount position in recommender systems.
Recent efforts have sought to mitigate these challenges by integrating Pre-trained Language Models (PLMs)
We propose textbfCost-textbfEfficient textbfLanguage Model textbfAlignment (textbfCELA) for CTR prediction.
arXiv Detail & Related papers (2024-05-17T07:43:25Z) - AutoGuide: Automated Generation and Selection of Context-Aware Guidelines for Large Language Model Agents [74.17623527375241]
We introduce a novel framework, called AutoGuide, which automatically generates context-aware guidelines from offline experiences.
As a result, our guidelines facilitate the provision of relevant knowledge for the agent's current decision-making process.
Our evaluation demonstrates that AutoGuide significantly outperforms competitive baselines in complex benchmark domains.
arXiv Detail & Related papers (2024-03-13T22:06:03Z) - Counterfactual Explanations as Interventions in Latent Space [62.997667081978825]
Counterfactual explanations aim to provide to end users a set of features that need to be changed in order to achieve a desired outcome.
Current approaches rarely take into account the feasibility of actions needed to achieve the proposed explanations.
We present Counterfactual Explanations as Interventions in Latent Space (CEILS), a methodology to generate counterfactual explanations.
arXiv Detail & Related papers (2021-06-14T20:48:48Z) - Obtaining Better Static Word Embeddings Using Contextual Embedding
Models [53.86080627007695]
Our proposed distillation method is a simple extension of CBOW-based training.
As a side-effect, our approach also allows a fair comparison of both contextual and static embeddings.
arXiv Detail & Related papers (2021-06-08T12:59:32Z) - Generative Counterfactuals for Neural Networks via Attribute-Informed
Perturbation [51.29486247405601]
We design a framework to generate counterfactuals for raw data instances with the proposed Attribute-Informed Perturbation (AIP)
By utilizing generative models conditioned with different attributes, counterfactuals with desired labels can be obtained effectively and efficiently.
Experimental results on real-world texts and images demonstrate the effectiveness, sample quality as well as efficiency of our designed framework.
arXiv Detail & Related papers (2021-01-18T08:37:13Z) - Why model why? Assessing the strengths and limitations of LIME [0.0]
This paper examines the effectiveness of the Local Interpretable Model-Agnostic Explanations (LIME) xAI framework.
LIME is one of the most popular model agnostic frameworks found in the literature.
We show how LIME can be used to supplement conventional performance assessment methods.
arXiv Detail & Related papers (2020-11-30T21:08:07Z) - A Diagnostic Study of Explainability Techniques for Text Classification [52.879658637466605]
We develop a list of diagnostic properties for evaluating existing explainability techniques.
We compare the saliency scores assigned by the explainability techniques with human annotations of salient input regions to find relations between a model's performance and the agreement of its rationales with human ones.
arXiv Detail & Related papers (2020-09-25T12:01:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.