論文の概要: CASPER: Causality-Aware Spatiotemporal Graph Neural Networks for Spatiotemporal Time Series Imputation
- arxiv url: http://arxiv.org/abs/2403.11960v1
- Date: Mon, 18 Mar 2024 16:57:16 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-20 19:20:58.420227
- Title: CASPER: Causality-Aware Spatiotemporal Graph Neural Networks for Spatiotemporal Time Series Imputation
- Title(参考訳): Causality-Aware Spatiotemporal Graph Neural Networks for Spatiotemporal Time Series Imputation
- Authors: Baoyu Jing, Dawei Zhou, Kan Ren, Carl Yang,
- Abstract要約: 本稿では,時間的時系列計算を因果的観点から再考する。
インプット、アウトプット、埋め込み、共同創設者間の因果関係を示す。
この結果に基づいて,新しいCausality-Aware SpatiotEmpoRalグラフニューラルネットワークを提案する。
- 参考スコア(独自算出の注目度): 33.887641183000255
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Spatiotemporal time series is the foundation of understanding human activities and their impacts, which is usually collected via monitoring sensors placed at different locations. The collected data usually contains missing values due to various failures, which have significant impact on data analysis. To impute the missing values, a lot of methods have been introduced. When recovering a specific data point, most existing methods tend to take into consideration all the information relevant to that point regardless of whether they have a cause-and-effect relationship. During data collection, it is inevitable that some unknown confounders are included, e.g., background noise in time series and non-causal shortcut edges in the constructed sensor network. These confounders could open backdoor paths between the input and output, in other words, they establish non-causal correlations between the input and output. Over-exploiting these non-causal correlations could result in overfitting and make the model vulnerable to noises. In this paper, we first revisit spatiotemporal time series imputation from a causal perspective, which shows the causal relationships among the input, output, embeddings and confounders. Next, we show how to block the confounders via the frontdoor adjustment. Based on the results of the frontdoor adjustment, we introduce a novel Causality-Aware SPatiotEmpoRal graph neural network (CASPER), which contains a novel Spatiotemporal Causal Attention (SCA) and a Prompt Based Decoder (PBD). PBD could reduce the impact of confounders and SCA could discover the sparse causal relationships among embeddings. Theoretical analysis reveals that SCA discovers causal relationships based on the values of gradients. We evaluate Casper on three real-world datasets, and the experimental results show that Casper outperforms the baselines and effectively discovers causal relationships.
- Abstract(参考訳): 時空間時系列は人間の活動とその影響を理解する基礎であり、通常は異なる場所に配置された監視センサーを通して収集される。
収集されたデータは通常、さまざまな障害のために欠落した値を含んでおり、データ分析に大きな影響を及ぼす。
欠落した値を暗示するために、多くのメソッドが導入されている。
特定のデータポイントを復元する場合、ほとんどの既存手法は、原因と効果の関係の有無にかかわらず、そのポイントに関連するすべての情報を考慮する傾向にある。
データ収集の過程では、例えば時系列のバックグラウンドノイズや、構築されたセンサネットワーク内の非因果的ショートカットエッジなど、未知の共同創設者が含まれていることは避けられない。
これらの共同設立者は、インプットとアウトプットの間にバックドアパスを開くことができ、言い換えれば、インプットとアウトプットの間に非因果関係を確立することができる。
これらの非因果関係を過度に探索すると、過度に適合し、モデルをノイズに弱いものにすることができる。
本稿では,入力,出力,埋め込み,共同設立者間の因果関係を示す因果的視点から,まず時空間的時系列計算を再考する。
次に、玄関の調整を通じて共同ファウンダーをブロックする方法を示す。
正面調整の結果に基づき,新しい時空間注意 (SCA) と Prompt Based Decoder (PBD) を含むCausality-Aware SPatiotEmpoRal graph Neural Network (CASPER) を導入する。
PBDは共同設立者の影響を減らし、SCAは埋め込み間の微妙な因果関係を発見する可能性がある。
理論的解析によると、SCAは勾配の値に基づいて因果関係を発見する。
実世界の3つのデータセット上でCasperを評価し,実験結果から,Casperはベースラインよりも優れ,因果関係を効果的に発見できることが示された。
関連論文リスト
- Causal Discovery from Time-Series Data with Short-Term Invariance-Based Convolutional Neural Networks [12.784885649573994]
時系列データによる因果発見は、スライス内(同時)とスライス間(時差)の両方の因果関係を捉えることを目的としている。
我々は, textbfShort-textbfTerm textbfInvariance に着目した勾配に基づく因果探索手法 STIC を提案する。
論文 参考訳(メタデータ) (2024-08-15T08:43:28Z) - Generating Fine-Grained Causality in Climate Time Series Data for Forecasting and Anomaly Detection [67.40407388422514]
我々は、TBN Granger Causalityという概念的微粒因果モデルを設計する。
次に, TBN Granger Causality を生成的に発見する TacSas という, エンドツーエンドの深部生成モデルを提案する。
気候予報のための気候指標ERA5と、極度気象警報のためのNOAAの極端気象基準でTacSasを試験する。
論文 参考訳(メタデータ) (2024-08-08T06:47:21Z) - Correlation-aware Spatial-Temporal Graph Learning for Multivariate
Time-series Anomaly Detection [67.60791405198063]
時系列異常検出のための相関対応時空間グラフ学習(CST-GL)を提案する。
CST-GLは、多変量時系列相関学習モジュールを介してペアの相関を明示的にキャプチャする。
新規な異常スコアリング成分をCST-GLにさらに統合し、純粋に教師なしの方法で異常の度合いを推定する。
論文 参考訳(メタデータ) (2023-07-17T11:04:27Z) - Causal discovery for time series with constraint-based model and PMIME
measure [0.0]
本稿では,因果探索アルゴリズムと情報理論に基づく測度を組み合わせた時系列データにおける因果関係の発見手法を提案する。
提案手法を複数のシミュレーションデータセット上で評価し,有望な結果を示す。
論文 参考訳(メタデータ) (2023-05-31T09:38:50Z) - Uncovering the Missing Pattern: Unified Framework Towards Trajectory
Imputation and Prediction [60.60223171143206]
軌道予測は、観測されたシーケンスから実体運動や人間の行動を理解する上で重要な作業である。
現在の方法では、観測されたシーケンスが完了したと仮定し、欠落した値の可能性を無視する。
本稿では,グラフに基づく条件変動リカレントニューラルネットワーク (GC-VRNN) の統一フレームワークを提案する。
論文 参考訳(メタデータ) (2023-03-28T14:27:27Z) - DOMINO: Visual Causal Reasoning with Time-Dependent Phenomena [59.291745595756346]
本研究では,時間遅延のウィンドウに関連する因果関係の発見に人間が参加できる視覚分析手法を提案する。
具体的には、論理に基づく因果関係の確立した手法を活用し、分析者が潜在的な原因の重要性を検証できるようにする。
効果は他の効果の原因となりうるので,本手法で検出した時間的要因と効果の関係を視覚フロー図にまとめることができる。
論文 参考訳(メタデータ) (2023-03-12T03:40:21Z) - DynImp: Dynamic Imputation for Wearable Sensing Data Through Sensory and
Temporal Relatedness [78.98998551326812]
従来の手法では、データの時系列ダイナミクスと、異なるセンサーの特徴の関連性の両方をめったに利用していない、と我々は主張する。
我々はDynImpと呼ばれるモデルを提案し、特徴軸に沿って近接する隣人と異なる時間点の欠如を扱う。
本手法は, 関連センサのマルチモーダル性特性を活かし, 履歴時系列のダイナミックスから学習し, 極端に欠落した状態でデータを再構築することができることを示す。
論文 参考訳(メタデータ) (2022-09-26T21:59:14Z) - Causal Discovery from Sparse Time-Series Data Using Echo State Network [0.0]
時系列データ間の因果関係の発見は、症状の原因の診断に役立つ。
本稿では,2つの部分から構成される新しいシステムを提案する。第1部はガウスプロセス回帰を,第2部はエコー状態ネットワークを活用する。
本稿では,対応するマシューズ相関係数 (MCC) と受信器動作特性曲線 (ROC) について報告する。
論文 参考訳(メタデータ) (2022-01-09T05:55:47Z) - Path Signature Area-Based Causal Discovery in Coupled Time Series [0.0]
本稿では,2変数間の符号付き領域の大きさの意義を解析するために,信頼度系列の応用を提案する。
このアプローチは、2つの時系列の間に存在する因果関係の信頼性を定義する新しい方法を提供する。
論文 参考訳(メタデータ) (2021-10-23T19:57:22Z) - Amortized Causal Discovery: Learning to Infer Causal Graphs from
Time-Series Data [63.15776078733762]
本稿では,時系列データから因果関係を推定する新しいフレームワークであるAmortized Causal Discoveryを提案する。
本研究では,本手法が変分モデルとして実装され,因果発見性能が大幅に向上することを示した。
論文 参考訳(メタデータ) (2020-06-18T19:59:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。